dup

dmzj update predict

Verze ze dne 02. 12. 2018. Zobrazit nejnovější verzi.

K instalaci tototo skriptu si budete muset nainstalovat rozšíření jako Tampermonkey, Greasemonkey nebo Violentmonkey.

K instalaci tohoto skriptu si budete muset nainstalovat rozšíření jako Tampermonkey nebo Violentmonkey.

K instalaci tohoto skriptu si budete muset nainstalovat rozšíření jako Tampermonkey nebo Violentmonkey.

K instalaci tohoto skriptu si budete muset nainstalovat rozšíření jako Tampermonkey nebo Userscripts.

You will need to install an extension such as Tampermonkey to install this script.

K instalaci tohoto skriptu si budete muset nainstalovat manažer uživatelských skriptů.

(Už mám manažer uživatelských skriptů, nechte mě ho nainstalovat!)

You will need to install an extension such as Stylus to install this style.

You will need to install an extension such as Stylus to install this style.

You will need to install an extension such as Stylus to install this style.

You will need to install a user style manager extension to install this style.

You will need to install a user style manager extension to install this style.

You will need to install a user style manager extension to install this style.

(Už mám manažer uživatelských stylů, nechte mě ho nainstalovat!)

// ==UserScript==
// @name         dup
// @version      0.0.1
// @include      https://manhua.dmzj.com/*
// @description  dmzj update predict
// @grant        GM_xmlhttpRequest
// @namespace    https://greasyfork.org/users/164996a
// @require      https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.min.js
// ==/UserScript==
// https://github.com/Tom-Alexander/regression-js
const Regression = () => {
  const DEFAULT_OPTIONS = { order: 2, precision: 2, period: null }
  function gaussianElimination(input, order) {
    const matrix = input
    const n = input.length - 1
    const coefficients = [order]
    for (let i = 0; i < n; i++) {
      let maxrow = i
      for (let j = i + 1; j < n; j++) {
        if (Math.abs(matrix[i][j]) > Math.abs(matrix[i][maxrow])) {
          maxrow = j
        }
      }
      for (let k = i; k < n + 1; k++) {
        const tmp = matrix[k][i]
        matrix[k][i] = matrix[k][maxrow]
        matrix[k][maxrow] = tmp
      }
      for (let j = i + 1; j < n; j++) {
        for (let k = n; k >= i; k--) {
          matrix[k][j] -= (matrix[k][i] * matrix[i][j]) / matrix[i][i]
        }
      }
    }
    for (let j = n - 1; j >= 0; j--) {
      let total = 0
      for (let k = j + 1; k < n; k++) {
        total += matrix[k][j] * coefficients[k]
      }
      coefficients[j] = (matrix[n][j] - total) / matrix[j][j]
    }
    return coefficients
  }
  function round(number, precision) {
    const factor = 10 ** precision
    return Math.round(number * factor) / factor
  }
  const methods = {
    linear(data, options) {
      const sum = [0, 0, 0, 0, 0]
      let len = 0

      for (let n = 0; n < data.length; n++) {
        if (data[n][1] !== null) {
          len++
          sum[0] += data[n][0]
          sum[1] += data[n][1]
          sum[2] += data[n][0] * data[n][0]
          sum[3] += data[n][0] * data[n][1]
          sum[4] += data[n][1] * data[n][1]
        }
      }

      const run = len * sum[2] - sum[0] * sum[0]
      const rise = len * sum[3] - sum[0] * sum[1]
      const gradient = run === 0 ? 0 : round(rise / run, options.precision)
      const intercept = round(sum[1] / len - (gradient * sum[0]) / len, options.precision)

      const predict = x => [
        round(x, options.precision),
        round(gradient * x + intercept, options.precision)
      ]

      const points = data.map(point => predict(point[0]))

      return {
        points,
        predict,
        equation: [gradient, intercept],
        r2: round(determinationCoefficient(data, points), options.precision),
        string: intercept === 0 ? `y = ${gradient}x` : `y = ${gradient}x + ${intercept}`
      }
    },
    polynomial(data, options) {
      const lhs = []
      const rhs = []
      let a = 0
      let b = 0
      const len = data.length
      const k = options.order + 1
      for (let i = 0; i < k; i++) {
        for (let l = 0; l < len; l++) {
          if (data[l][1] !== null) {
            a += data[l][0] ** i * data[l][1]
          }
        }
        lhs.push(a)
        a = 0
        const c = []
        for (let j = 0; j < k; j++) {
          for (let l = 0; l < len; l++) {
            if (data[l][1] !== null) {
              b += data[l][0] ** (i + j)
            }
          }
          c.push(b)
          b = 0
        }
        rhs.push(c)
      }
      rhs.push(lhs)
      const coefficients = gaussianElimination(rhs, k).map(v =>
        round(v, options.precision)
      )
      const predict = x => [
        round(x, options.precision),
        round(
          coefficients.reduce((sum, coeff, power) => sum + coeff * x ** power, 0),
          options.precision
        )
      ]
      return {
        predict
      }
    }
  }
  function createWrapper() {
    const reduce = (accumulator, name) => ({
      _round: round,
      ...accumulator,
      [name](data, supplied) {
        return methods[name](data, {
          ...DEFAULT_OPTIONS,
          ...supplied
        })
      }
    })
    return Object.keys(methods).reduce(reduce, {})
  }
  return createWrapper()
}

const gmFetch = url =>
  new Promise((resolve, reject) => {
    GM_xmlhttpRequest({
      url: url,
      method: 'GET',
      onload: resolve,
      onerror: reject
    })
  })
// https://github.com/tkkcc/flutter_dmzj/blob/master/lib/util/api.dart
const comic = async id => {
  const channel = 'Android'
  const version = '2.7.009'
  const api3 = 'https://v3api.dmzj.com'
  let a = await gmFetch(`${api3}/comic/${id}.json?channel=${channel}&version=${version}`)
  if (a.status !== 200) return
  a = JSON.parse(a.responseText)
  // only process first chapter
  if (a.status[0].tag_name !== '连载中') return
  // console.log(a)
  a = a.chapters[0].data.map(i => ({
    id: i.chapter_id,
    order: i.chapter_order,
    title: i.chapter_title,
    size: i.filesize,
    time: i.updatetime
  }))
  return a
}

const format = i => new Date(i * 1000).toISOString().slice(0, 10)
const human = i => {
  const a = new Date(i * 1000)
  const b = new Date()
  let c = ((a - b) / (1000 * 60 * 60 * 24)) >> 0
  // console.log(c)
  if (c === 0) return '今天更新'
  if (c === 1) return '明天更新'
  if (c < 7) return c + '天后更新'
  c = (c / 7) >> 0
  if (c < 3) return '下周更新'
  if (c < 5) return c + '周后更新'
  if (c < 6) return c + '本月更新'
}

const html = `
<style>
body {
  text-align: center;
}
div.regression_canvas {
  background: #fefefe;
  display: none;
  // margin: 3em;
  padding: 1em;
  width: 40em;
  left: -36em;
  top: 0em;
  z-index: 2;
}
span.regression_app:hover > div {
  display: inline-block;
  position: absolute;
}
span.regression_app {
  position: relative;
  color: slateblue;
  float: right;
}
</style>
<span class="regression_app">
<div class="regression_canvas">
  <canvas width="10" height="10"></canvas>
</div>
</span>`

// main
const main = async () => {
  // data
  if (typeof g_current_id === undefined) return
  const p = document.querySelector(
    'div.middleright div.odd_anim_title > div.odd_anim_title_m'
  )
  if (!p) return
  const a = await comic(g_current_id)
  if (!a || a.length < 5) return
  a.sort((a, b) => a.time - b.time)
  const b = a.slice(-5).map((i, index) => [index, i.time])
  const result = Regression().polynomial(b, { order: 2 })
  let d = result.predict(b.length)
  if (d[1] < b[b.length - 1][1]) return
  d = human(d[1])
  if (!d) return

  // dom
  p.insertAdjacentHTML('beforeend', html)
  document.querySelector('.regression_app').insertAdjacentText('afterbegin', d)
  const ctx = document
    .querySelector('.regression_canvas')
    .firstElementChild.getContext('2d')
  const config = {
    type: 'line',
    data: {
      labels: a.map(i => i.title),
      datasets: [
        {
          backgroundColor: 'slateblue',
          borderColor: 'slateblue',
          data: a.map(i => i.time),
          fill: false
        }
      ]
    },
    options: {
      responsive: true,
      legend: {
        display: false
      },
      title: {
        display: true,
        text: '更新记录'
      },
      tooltips: {
        intersect: false,
        callbacks: {
          title(item, data) {
            return item[0].xLabel + ' ' + format(item[0].yLabel) + '更新'
          },
          label() {}
        }
      },
      elements: {
        line: {
          tension: 0 // disables bezier curves
        }
      },
      scales: {
        xAxes: [
          {
            gridLines: {
              display: false
            }
          }
        ],
        yAxes: [
          {
            gridLines: {
              display: false
            },
            ticks: {
              callback: format
            }
          }
        ]
      }
    }
  }
  new Chart(ctx, config)
}
main()