Greasy Fork is available in English.

ScenexeUtils

Adds back encode, decode, compress, decompress, and executeMessage functions. Also adds encodeInverse and decodeInverse to undo decode and encode operations.

Този скрипт не може да бъде инсталиран директно. Това е библиотека за други скриптове и може да бъде използвана с мета-директива // @require https://update.greasyfork.org/scripts/457386/1135843/ScenexeUtils.js

// ==UserScript==
// @name         ScenexeUtils
// @description  Adds back encode, decode, compress, decompress, and executeMessage functions. Also adds encodeInverse and decodeInverse to undo decode and encode operations.
// @namespace    ScenexeUtils
// @version      0.5
// @author       discordtehe
// @match        https://*.scenexe.io
// @grant        none
// ==/UserScript==

var encodeRegex = /new Uint8Array\(\[\w+\]\)\),(\d+)/gm;
var decodeRegex = /\]\),((\d+))\),\w+=\w+\[/gm;

//https://github.com/willnode/deobfuscator/blob/master/src/index.js
function simplifyString(code) {
  var replaced = code
    .replace(/"(\\"|[^"])*?"/g, function (m) {
      return JSON.stringify(eval(m));
    })
    .replace(/'(\\"|[^'])*?'/g, function (m) {
      return JSON.stringify(eval(m));
    });
  return replaced;
};

//https://github.com/willnode/deobfuscator/blob/master/src/index.js
function simplifyNumber(code) {
  var replaced = code.replace(
    /\b0x[a-fA-F0-9]+\b/g,
    function (m) {
      return JSON.stringify(eval(m));
    }
  );
  return replaced;
};

function getFirstGroup(regexp, str) {
  const array = [...str.matchAll(regexp)];
  return ''+array.map(m => m[1]);
}

var scriptRegex = /['"]([\w+\-_]+\.js)/gm;
var mainjs = document.querySelector('script[defer="defer"]');
const req = new XMLHttpRequest();
req.addEventListener("load", reqListener);
req.open("GET", mainjs.src);
req.send();

function reqListener() {
  var jsCode = this.responseText;
  jsCode = simplifyString(simplifyNumber(jsCode));
  window.encodeNum = Number(getFirstGroup(encodeRegex, jsCode));
  window.decodeNum = Number(getFirstGroup(decodeRegex, jsCode));
}

//the following code (line 60-16328) adds the encode, decode, compress, and decompress functions.
//These functions behave just like scenexe's alpha 0.11.3's equivalent functions.
//Go to https://github.com/discordtehe/scenexe-userscripts to see how these lines were generated.

(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.utils = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i<t.length;i++)o(t[i]);return o}return r})()({1:[function(require,module,exports){
const msgpackr = require('msgpackr');
const { inflate, deflate } = require('pako');
const { fromByteArray, toByteArray } = require('base64-js');

var packer = new msgpackr.Packr();
var encode = packer.pack;
var decode = packer.unpack;

function combine(first, second) {
	var combined = new Uint8Array(first.length + second.length);
	combined.set(first, 0);
	combined.set(second, first.length)
	return combined;
}

function arrXor(arr, num) {
	for (var i = 0; i < arr.length; i++)
		arr[i] = arr[i] ^ num;
	return arr;
}

//encode and decode are the normal encoders and decoders
//encodeInverse and decodeInverse are the inverse encoders and decoders

module.exports = {
	encode: function(data) {
		return arrXor(combine(encode(data[1]), new Uint8Array([data[0]])), window.decodeNum);
	},
	encodeInverse: function(data) {
		return arrXor(combine(encode(data[1]), new Uint8Array([data[0]])), window.encodeNum);
	},
	decode: function(data) {
		let xored = arrXor(new Uint8Array(data), window.decodeNum);
		let type = xored[xored.length - 1];
		let content = decode(xored.slice(0, xored.length - 1));
		return [type, content];
	},
	decodeInverse: function(data) {
		let xored = arrXor(new Uint8Array(data), window.encodeNum);
		let type = xored[xored.length - 1];
		let content = decode(xored.slice(0, xored.length - 1));
		return [type, content];
	},
	compress: function(data) {
		return fromByteArray(deflate(data));
	},
	decompress: function(data) {
		return inflate(toByteArray(data), { to: 'string' });
	}
}

},{"base64-js":2,"msgpackr":4,"pako":6}],2:[function(require,module,exports){
'use strict'

exports.byteLength = byteLength
exports.toByteArray = toByteArray
exports.fromByteArray = fromByteArray

var lookup = []
var revLookup = []
var Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array

var code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
for (var i = 0, len = code.length; i < len; ++i) {
  lookup[i] = code[i]
  revLookup[code.charCodeAt(i)] = i
}

// Support decoding URL-safe base64 strings, as Node.js does.
// See: https://en.wikipedia.org/wiki/Base64#URL_applications
revLookup['-'.charCodeAt(0)] = 62
revLookup['_'.charCodeAt(0)] = 63

function getLens (b64) {
  var len = b64.length

  if (len % 4 > 0) {
    throw new Error('Invalid string. Length must be a multiple of 4')
  }

  // Trim off extra bytes after placeholder bytes are found
  // See: https://github.com/beatgammit/base64-js/issues/42
  var validLen = b64.indexOf('=')
  if (validLen === -1) validLen = len

  var placeHoldersLen = validLen === len
    ? 0
    : 4 - (validLen % 4)

  return [validLen, placeHoldersLen]
}

// base64 is 4/3 + up to two characters of the original data
function byteLength (b64) {
  var lens = getLens(b64)
  var validLen = lens[0]
  var placeHoldersLen = lens[1]
  return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
}

function _byteLength (b64, validLen, placeHoldersLen) {
  return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
}

function toByteArray (b64) {
  var tmp
  var lens = getLens(b64)
  var validLen = lens[0]
  var placeHoldersLen = lens[1]

  var arr = new Arr(_byteLength(b64, validLen, placeHoldersLen))

  var curByte = 0

  // if there are placeholders, only get up to the last complete 4 chars
  var len = placeHoldersLen > 0
    ? validLen - 4
    : validLen

  var i
  for (i = 0; i < len; i += 4) {
    tmp =
      (revLookup[b64.charCodeAt(i)] << 18) |
      (revLookup[b64.charCodeAt(i + 1)] << 12) |
      (revLookup[b64.charCodeAt(i + 2)] << 6) |
      revLookup[b64.charCodeAt(i + 3)]
    arr[curByte++] = (tmp >> 16) & 0xFF
    arr[curByte++] = (tmp >> 8) & 0xFF
    arr[curByte++] = tmp & 0xFF
  }

  if (placeHoldersLen === 2) {
    tmp =
      (revLookup[b64.charCodeAt(i)] << 2) |
      (revLookup[b64.charCodeAt(i + 1)] >> 4)
    arr[curByte++] = tmp & 0xFF
  }

  if (placeHoldersLen === 1) {
    tmp =
      (revLookup[b64.charCodeAt(i)] << 10) |
      (revLookup[b64.charCodeAt(i + 1)] << 4) |
      (revLookup[b64.charCodeAt(i + 2)] >> 2)
    arr[curByte++] = (tmp >> 8) & 0xFF
    arr[curByte++] = tmp & 0xFF
  }

  return arr
}

function tripletToBase64 (num) {
  return lookup[num >> 18 & 0x3F] +
    lookup[num >> 12 & 0x3F] +
    lookup[num >> 6 & 0x3F] +
    lookup[num & 0x3F]
}

function encodeChunk (uint8, start, end) {
  var tmp
  var output = []
  for (var i = start; i < end; i += 3) {
    tmp =
      ((uint8[i] << 16) & 0xFF0000) +
      ((uint8[i + 1] << 8) & 0xFF00) +
      (uint8[i + 2] & 0xFF)
    output.push(tripletToBase64(tmp))
  }
  return output.join('')
}

function fromByteArray (uint8) {
  var tmp
  var len = uint8.length
  var extraBytes = len % 3 // if we have 1 byte left, pad 2 bytes
  var parts = []
  var maxChunkLength = 16383 // must be multiple of 3

  // go through the array every three bytes, we'll deal with trailing stuff later
  for (var i = 0, len2 = len - extraBytes; i < len2; i += maxChunkLength) {
    parts.push(encodeChunk(uint8, i, (i + maxChunkLength) > len2 ? len2 : (i + maxChunkLength)))
  }

  // pad the end with zeros, but make sure to not forget the extra bytes
  if (extraBytes === 1) {
    tmp = uint8[len - 1]
    parts.push(
      lookup[tmp >> 2] +
      lookup[(tmp << 4) & 0x3F] +
      '=='
    )
  } else if (extraBytes === 2) {
    tmp = (uint8[len - 2] << 8) + uint8[len - 1]
    parts.push(
      lookup[tmp >> 10] +
      lookup[(tmp >> 4) & 0x3F] +
      lookup[(tmp << 2) & 0x3F] +
      '='
    )
  }

  return parts.join('')
}

},{}],3:[function(require,module,exports){
(function (__dirname){(function (){
module.exports = require('node-gyp-build-optional-packages')(__dirname);
}).call(this)}).call(this,"/node_modules/msgpackr-extract")
},{"node-gyp-build-optional-packages":5}],4:[function(require,module,exports){
(function (process,Buffer,__filename){(function (){
'use strict';

Object.defineProperty(exports, '__esModule', { value: true });

var stream = require('stream');
var module$1 = require('module');

var decoder;
try {
	decoder = new TextDecoder();
} catch(error) {}
var src;
var srcEnd;
var position = 0;
const EMPTY_ARRAY = [];
var strings = EMPTY_ARRAY;
var stringPosition = 0;
var currentUnpackr = {};
var currentStructures;
var srcString;
var srcStringStart = 0;
var srcStringEnd = 0;
var bundledStrings;
var referenceMap;
var currentExtensions = [];
var dataView;
var defaultOptions = {
	useRecords: false,
	mapsAsObjects: true
};
class C1Type {}
const C1 = new C1Type();
C1.name = 'MessagePack 0xC1';
var sequentialMode = false;
var inlineObjectReadThreshold = 2;
try {
	new Function('');
} catch(error) {
	// if eval variants are not supported, do not create inline object readers ever
	inlineObjectReadThreshold = Infinity;
}

class Unpackr {
	constructor(options) {
		if (options) {
			if (options.useRecords === false && options.mapsAsObjects === undefined)
				options.mapsAsObjects = true;
			if (options.sequential && options.trusted !== false) {
				options.trusted = true;
				if (!options.structures && options.useRecords != false) {
					options.structures = [];
					if (!options.maxSharedStructures)
						options.maxSharedStructures = 0;
				}
			}
			if (options.structures)
				options.structures.sharedLength = options.structures.length;
			else if (options.getStructures) {
				(options.structures = []).uninitialized = true; // this is what we use to denote an uninitialized structures
				options.structures.sharedLength = 0;
			}
		}
		Object.assign(this, options);
	}
	unpack(source, end) {
		if (src) {
			// re-entrant execution, save the state and restore it after we do this unpack
			return saveState(() => {
				clearSource();
				return this ? this.unpack(source, end) : Unpackr.prototype.unpack.call(defaultOptions, source, end)
			})
		}
		srcEnd = end > -1 ? end : source.length;
		position = 0;
		stringPosition = 0;
		srcStringEnd = 0;
		srcString = null;
		strings = EMPTY_ARRAY;
		bundledStrings = null;
		src = source;
		// this provides cached access to the data view for a buffer if it is getting reused, which is a recommend
		// technique for getting data from a database where it can be copied into an existing buffer instead of creating
		// new ones
		try {
			dataView = source.dataView || (source.dataView = new DataView(source.buffer, source.byteOffset, source.byteLength));
		} catch(error) {
			// if it doesn't have a buffer, maybe it is the wrong type of object
			src = null;
			if (source instanceof Uint8Array)
				throw error
			throw new Error('Source must be a Uint8Array or Buffer but was a ' + ((source && typeof source == 'object') ? source.constructor.name : typeof source))
		}
		if (this instanceof Unpackr) {
			currentUnpackr = this;
			if (this.structures) {
				currentStructures = this.structures;
				return checkedRead()
			} else if (!currentStructures || currentStructures.length > 0) {
				currentStructures = [];
			}
		} else {
			currentUnpackr = defaultOptions;
			if (!currentStructures || currentStructures.length > 0)
				currentStructures = [];
		}
		return checkedRead()
	}
	unpackMultiple(source, forEach) {
		let values, lastPosition = 0;
		try {
			sequentialMode = true;
			let size = source.length;
			let value = this ? this.unpack(source, size) : defaultUnpackr.unpack(source, size);
			if (forEach) {
				forEach(value);
				while(position < size) {
					lastPosition = position;
					if (forEach(checkedRead()) === false) {
						return
					}
				}
			}
			else {
				values = [ value ];
				while(position < size) {
					lastPosition = position;
					values.push(checkedRead());
				}
				return values
			}
		} catch(error) {
			error.lastPosition = lastPosition;
			error.values = values;
			throw error
		} finally {
			sequentialMode = false;
			clearSource();
		}
	}
	_mergeStructures(loadedStructures, existingStructures) {
		loadedStructures = loadedStructures || [];
		for (let i = 0, l = loadedStructures.length; i < l; i++) {
			let structure = loadedStructures[i];
			if (structure) {
				structure.isShared = true;
				if (i >= 32)
					structure.highByte = (i - 32) >> 5;
			}
		}
		loadedStructures.sharedLength = loadedStructures.length;
		for (let id in existingStructures || []) {
			if (id >= 0) {
				let structure = loadedStructures[id];
				let existing = existingStructures[id];
				if (existing) {
					if (structure)
						(loadedStructures.restoreStructures || (loadedStructures.restoreStructures = []))[id] = structure;
					loadedStructures[id] = existing;
				}
			}
		}
		return this.structures = loadedStructures
	}
	decode(source, end) {
		return this.unpack(source, end)
	}
}
function checkedRead() {
	try {
		if (!currentUnpackr.trusted && !sequentialMode) {
			let sharedLength = currentStructures.sharedLength || 0;
			if (sharedLength < currentStructures.length)
				currentStructures.length = sharedLength;
		}
		let result = read();
		if (bundledStrings) // bundled strings to skip past
			position = bundledStrings.postBundlePosition;

		if (position == srcEnd) {
			// finished reading this source, cleanup references
			if (currentStructures.restoreStructures)
				restoreStructures();
			currentStructures = null;
			src = null;
			if (referenceMap)
				referenceMap = null;
		} else if (position > srcEnd) {
			// over read
			throw new Error('Unexpected end of MessagePack data')
		} else if (!sequentialMode) {
			throw new Error('Data read, but end of buffer not reached ' + JSON.stringify(result).slice(0, 100))
		}
		// else more to read, but we are reading sequentially, so don't clear source yet
		return result
	} catch(error) {
		if (currentStructures.restoreStructures)
			restoreStructures();
		clearSource();
		if (error instanceof RangeError || error.message.startsWith('Unexpected end of buffer') || position > srcEnd) {
			error.incomplete = true;
		}
		throw error
	}
}

function restoreStructures() {
	for (let id in currentStructures.restoreStructures) {
		currentStructures[id] = currentStructures.restoreStructures[id];
	}
	currentStructures.restoreStructures = null;
}

function read() {
	let token = src[position++];
	if (token < 0xa0) {
		if (token < 0x80) {
			if (token < 0x40)
				return token
			else {
				let structure = currentStructures[token & 0x3f] ||
					currentUnpackr.getStructures && loadStructures()[token & 0x3f];
				if (structure) {
					if (!structure.read) {
						structure.read = createStructureReader(structure, token & 0x3f);
					}
					return structure.read()
				} else
					return token
			}
		} else if (token < 0x90) {
			// map
			token -= 0x80;
			if (currentUnpackr.mapsAsObjects) {
				let object = {};
				for (let i = 0; i < token; i++) {
					let key = readKey();
					if (key === '__proto__')
						key = '__proto_';
					object[key] = read();
				}
				return object
			} else {
				let map = new Map();
				for (let i = 0; i < token; i++) {
					map.set(read(), read());
				}
				return map
			}
		} else {
			token -= 0x90;
			let array = new Array(token);
			for (let i = 0; i < token; i++) {
				array[i] = read();
			}
			return array
		}
	} else if (token < 0xc0) {
		// fixstr
		let length = token - 0xa0;
		if (srcStringEnd >= position) {
			return srcString.slice(position - srcStringStart, (position += length) - srcStringStart)
		}
		if (srcStringEnd == 0 && srcEnd < 140) {
			// for small blocks, avoiding the overhead of the extract call is helpful
			let string = length < 16 ? shortStringInJS(length) : longStringInJS(length);
			if (string != null)
				return string
		}
		return readFixedString(length)
	} else {
		let value;
		switch (token) {
			case 0xc0: return null
			case 0xc1:
				if (bundledStrings) {
					value = read(); // followed by the length of the string in characters (not bytes!)
					if (value > 0)
						return bundledStrings[1].slice(bundledStrings.position1, bundledStrings.position1 += value)
					else
						return bundledStrings[0].slice(bundledStrings.position0, bundledStrings.position0 -= value)
				}
				return C1; // "never-used", return special object to denote that
			case 0xc2: return false
			case 0xc3: return true
			case 0xc4:
				// bin 8
				value = src[position++];
				if (value === undefined)
					throw new Error('Unexpected end of buffer')
				return readBin(value)
			case 0xc5:
				// bin 16
				value = dataView.getUint16(position);
				position += 2;
				return readBin(value)
			case 0xc6:
				// bin 32
				value = dataView.getUint32(position);
				position += 4;
				return readBin(value)
			case 0xc7:
				// ext 8
				return readExt(src[position++])
			case 0xc8:
				// ext 16
				value = dataView.getUint16(position);
				position += 2;
				return readExt(value)
			case 0xc9:
				// ext 32
				value = dataView.getUint32(position);
				position += 4;
				return readExt(value)
			case 0xca:
				value = dataView.getFloat32(position);
				if (currentUnpackr.useFloat32 > 2) {
					// this does rounding of numbers that were encoded in 32-bit float to nearest significant decimal digit that could be preserved
					let multiplier = mult10[((src[position] & 0x7f) << 1) | (src[position + 1] >> 7)];
					position += 4;
					return ((multiplier * value + (value > 0 ? 0.5 : -0.5)) >> 0) / multiplier
				}
				position += 4;
				return value
			case 0xcb:
				value = dataView.getFloat64(position);
				position += 8;
				return value
			// uint handlers
			case 0xcc:
				return src[position++]
			case 0xcd:
				value = dataView.getUint16(position);
				position += 2;
				return value
			case 0xce:
				value = dataView.getUint32(position);
				position += 4;
				return value
			case 0xcf:
				if (currentUnpackr.int64AsNumber) {
					value = dataView.getUint32(position) * 0x100000000;
					value += dataView.getUint32(position + 4);
				} else
					value = dataView.getBigUint64(position);
				position += 8;
				return value

			// int handlers
			case 0xd0:
				return dataView.getInt8(position++)
			case 0xd1:
				value = dataView.getInt16(position);
				position += 2;
				return value
			case 0xd2:
				value = dataView.getInt32(position);
				position += 4;
				return value
			case 0xd3:
				if (currentUnpackr.int64AsNumber) {
					value = dataView.getInt32(position) * 0x100000000;
					value += dataView.getUint32(position + 4);
				} else
					value = dataView.getBigInt64(position);
				position += 8;
				return value

			case 0xd4:
				// fixext 1
				value = src[position++];
				if (value == 0x72) {
					return recordDefinition(src[position++] & 0x3f)
				} else {
					let extension = currentExtensions[value];
					if (extension) {
						if (extension.read) {
							position++; // skip filler byte
							return extension.read(read())
						} else if (extension.noBuffer) {
							position++; // skip filler byte
							return extension()
						} else
							return extension(src.subarray(position, ++position))
					} else
						throw new Error('Unknown extension ' + value)
				}
			case 0xd5:
				// fixext 2
				value = src[position];
				if (value == 0x72) {
					position++;
					return recordDefinition(src[position++] & 0x3f, src[position++])
				} else
					return readExt(2)
			case 0xd6:
				// fixext 4
				return readExt(4)
			case 0xd7:
				// fixext 8
				return readExt(8)
			case 0xd8:
				// fixext 16
				return readExt(16)
			case 0xd9:
			// str 8
				value = src[position++];
				if (srcStringEnd >= position) {
					return srcString.slice(position - srcStringStart, (position += value) - srcStringStart)
				}
				return readString8(value)
			case 0xda:
			// str 16
				value = dataView.getUint16(position);
				position += 2;
				if (srcStringEnd >= position) {
					return srcString.slice(position - srcStringStart, (position += value) - srcStringStart)
				}
				return readString16(value)
			case 0xdb:
			// str 32
				value = dataView.getUint32(position);
				position += 4;
				if (srcStringEnd >= position) {
					return srcString.slice(position - srcStringStart, (position += value) - srcStringStart)
				}
				return readString32(value)
			case 0xdc:
			// array 16
				value = dataView.getUint16(position);
				position += 2;
				return readArray(value)
			case 0xdd:
			// array 32
				value = dataView.getUint32(position);
				position += 4;
				return readArray(value)
			case 0xde:
			// map 16
				value = dataView.getUint16(position);
				position += 2;
				return readMap(value)
			case 0xdf:
			// map 32
				value = dataView.getUint32(position);
				position += 4;
				return readMap(value)
			default: // negative int
				if (token >= 0xe0)
					return token - 0x100
				if (token === undefined) {
					let error = new Error('Unexpected end of MessagePack data');
					error.incomplete = true;
					throw error
				}
				throw new Error('Unknown MessagePack token ' + token)

		}
	}
}
const validName = /^[a-zA-Z_$][a-zA-Z\d_$]*$/;
function createStructureReader(structure, firstId) {
	function readObject() {
		// This initial function is quick to instantiate, but runs slower. After several iterations pay the cost to build the faster function
		if (readObject.count++ > inlineObjectReadThreshold) {
			let readObject = structure.read = (new Function('r', 'return function(){return {' + structure.map(key => key === '__proto__' ? '__proto_:r()' :
				validName.test(key) ? key + ':r()' : ('[' + JSON.stringify(key) + ']:r()')).join(',') + '}}'))(read);
			if (structure.highByte === 0)
				structure.read = createSecondByteReader(firstId, structure.read);
			return readObject() // second byte is already read, if there is one so immediately read object
		}
		let object = {};
		for (let i = 0, l = structure.length; i < l; i++) {
			let key = structure[i];
			if (key === '__proto__')
				key = '__proto_';
			object[key] = read();
		}
		return object
	}
	readObject.count = 0;
	if (structure.highByte === 0) {
		return createSecondByteReader(firstId, readObject)
	}
	return readObject
}

const createSecondByteReader = (firstId, read0) => {
	return function() {
		let highByte = src[position++];
		if (highByte === 0)
			return read0()
		let id = firstId < 32 ? -(firstId + (highByte << 5)) : firstId + (highByte << 5);
		let structure = currentStructures[id] || loadStructures()[id];
		if (!structure) {
			throw new Error('Record id is not defined for ' + id)
		}
		if (!structure.read)
			structure.read = createStructureReader(structure, firstId);
		return structure.read()
	}
};

function loadStructures() {
	let loadedStructures = saveState(() => {
		// save the state in case getStructures modifies our buffer
		src = null;
		return currentUnpackr.getStructures()
	});
	return currentStructures = currentUnpackr._mergeStructures(loadedStructures, currentStructures)
}

var readFixedString = readStringJS;
var readString8 = readStringJS;
var readString16 = readStringJS;
var readString32 = readStringJS;
exports.isNativeAccelerationEnabled = false;

function setExtractor(extractStrings) {
	exports.isNativeAccelerationEnabled = true;
	readFixedString = readString(1);
	readString8 = readString(2);
	readString16 = readString(3);
	readString32 = readString(5);
	function readString(headerLength) {
		return function readString(length) {
			let string = strings[stringPosition++];
			if (string == null) {
				if (bundledStrings)
					return readStringJS(length)
				let extraction = extractStrings(position - headerLength, srcEnd, src);
				if (typeof extraction == 'string') {
					string = extraction;
					strings = EMPTY_ARRAY;
				} else {
					strings = extraction;
					stringPosition = 1;
					srcStringEnd = 1; // even if a utf-8 string was decoded, must indicate we are in the midst of extracted strings and can't skip strings
					string = strings[0];
					if (string === undefined)
						throw new Error('Unexpected end of buffer')
				}
			}
			let srcStringLength = string.length;
			if (srcStringLength <= length) {
				position += length;
				return string
			}
			srcString = string;
			srcStringStart = position;
			srcStringEnd = position + srcStringLength;
			position += length;
			return string.slice(0, length) // we know we just want the beginning
		}
	}
}
function readStringJS(length) {
	let result;
	if (length < 16) {
		if (result = shortStringInJS(length))
			return result
	}
	if (length > 64 && decoder)
		return decoder.decode(src.subarray(position, position += length))
	const end = position + length;
	const units = [];
	result = '';
	while (position < end) {
		const byte1 = src[position++];
		if ((byte1 & 0x80) === 0) {
			// 1 byte
			units.push(byte1);
		} else if ((byte1 & 0xe0) === 0xc0) {
			// 2 bytes
			const byte2 = src[position++] & 0x3f;
			units.push(((byte1 & 0x1f) << 6) | byte2);
		} else if ((byte1 & 0xf0) === 0xe0) {
			// 3 bytes
			const byte2 = src[position++] & 0x3f;
			const byte3 = src[position++] & 0x3f;
			units.push(((byte1 & 0x1f) << 12) | (byte2 << 6) | byte3);
		} else if ((byte1 & 0xf8) === 0xf0) {
			// 4 bytes
			const byte2 = src[position++] & 0x3f;
			const byte3 = src[position++] & 0x3f;
			const byte4 = src[position++] & 0x3f;
			let unit = ((byte1 & 0x07) << 0x12) | (byte2 << 0x0c) | (byte3 << 0x06) | byte4;
			if (unit > 0xffff) {
				unit -= 0x10000;
				units.push(((unit >>> 10) & 0x3ff) | 0xd800);
				unit = 0xdc00 | (unit & 0x3ff);
			}
			units.push(unit);
		} else {
			units.push(byte1);
		}

		if (units.length >= 0x1000) {
			result += fromCharCode.apply(String, units);
			units.length = 0;
		}
	}

	if (units.length > 0) {
		result += fromCharCode.apply(String, units);
	}

	return result
}

function readArray(length) {
	let array = new Array(length);
	for (let i = 0; i < length; i++) {
		array[i] = read();
	}
	return array
}

function readMap(length) {
	if (currentUnpackr.mapsAsObjects) {
		let object = {};
		for (let i = 0; i < length; i++) {
			let key = readKey();
			if (key === '__proto__')
				key = '__proto_';
			object[key] = read();
		}
		return object
	} else {
		let map = new Map();
		for (let i = 0; i < length; i++) {
			map.set(read(), read());
		}
		return map
	}
}

var fromCharCode = String.fromCharCode;
function longStringInJS(length) {
	let start = position;
	let bytes = new Array(length);
	for (let i = 0; i < length; i++) {
		const byte = src[position++];
		if ((byte & 0x80) > 0) {
				position = start;
				return
			}
			bytes[i] = byte;
		}
		return fromCharCode.apply(String, bytes)
}
function shortStringInJS(length) {
	if (length < 4) {
		if (length < 2) {
			if (length === 0)
				return ''
			else {
				let a = src[position++];
				if ((a & 0x80) > 1) {
					position -= 1;
					return
				}
				return fromCharCode(a)
			}
		} else {
			let a = src[position++];
			let b = src[position++];
			if ((a & 0x80) > 0 || (b & 0x80) > 0) {
				position -= 2;
				return
			}
			if (length < 3)
				return fromCharCode(a, b)
			let c = src[position++];
			if ((c & 0x80) > 0) {
				position -= 3;
				return
			}
			return fromCharCode(a, b, c)
		}
	} else {
		let a = src[position++];
		let b = src[position++];
		let c = src[position++];
		let d = src[position++];
		if ((a & 0x80) > 0 || (b & 0x80) > 0 || (c & 0x80) > 0 || (d & 0x80) > 0) {
			position -= 4;
			return
		}
		if (length < 6) {
			if (length === 4)
				return fromCharCode(a, b, c, d)
			else {
				let e = src[position++];
				if ((e & 0x80) > 0) {
					position -= 5;
					return
				}
				return fromCharCode(a, b, c, d, e)
			}
		} else if (length < 8) {
			let e = src[position++];
			let f = src[position++];
			if ((e & 0x80) > 0 || (f & 0x80) > 0) {
				position -= 6;
				return
			}
			if (length < 7)
				return fromCharCode(a, b, c, d, e, f)
			let g = src[position++];
			if ((g & 0x80) > 0) {
				position -= 7;
				return
			}
			return fromCharCode(a, b, c, d, e, f, g)
		} else {
			let e = src[position++];
			let f = src[position++];
			let g = src[position++];
			let h = src[position++];
			if ((e & 0x80) > 0 || (f & 0x80) > 0 || (g & 0x80) > 0 || (h & 0x80) > 0) {
				position -= 8;
				return
			}
			if (length < 10) {
				if (length === 8)
					return fromCharCode(a, b, c, d, e, f, g, h)
				else {
					let i = src[position++];
					if ((i & 0x80) > 0) {
						position -= 9;
						return
					}
					return fromCharCode(a, b, c, d, e, f, g, h, i)
				}
			} else if (length < 12) {
				let i = src[position++];
				let j = src[position++];
				if ((i & 0x80) > 0 || (j & 0x80) > 0) {
					position -= 10;
					return
				}
				if (length < 11)
					return fromCharCode(a, b, c, d, e, f, g, h, i, j)
				let k = src[position++];
				if ((k & 0x80) > 0) {
					position -= 11;
					return
				}
				return fromCharCode(a, b, c, d, e, f, g, h, i, j, k)
			} else {
				let i = src[position++];
				let j = src[position++];
				let k = src[position++];
				let l = src[position++];
				if ((i & 0x80) > 0 || (j & 0x80) > 0 || (k & 0x80) > 0 || (l & 0x80) > 0) {
					position -= 12;
					return
				}
				if (length < 14) {
					if (length === 12)
						return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l)
					else {
						let m = src[position++];
						if ((m & 0x80) > 0) {
							position -= 13;
							return
						}
						return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l, m)
					}
				} else {
					let m = src[position++];
					let n = src[position++];
					if ((m & 0x80) > 0 || (n & 0x80) > 0) {
						position -= 14;
						return
					}
					if (length < 15)
						return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l, m, n)
					let o = src[position++];
					if ((o & 0x80) > 0) {
						position -= 15;
						return
					}
					return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)
				}
			}
		}
	}
}

function readOnlyJSString() {
	let token = src[position++];
	let length;
	if (token < 0xc0) {
		// fixstr
		length = token - 0xa0;
	} else {
		switch(token) {
			case 0xd9:
			// str 8
				length = src[position++];
				break
			case 0xda:
			// str 16
				length = dataView.getUint16(position);
				position += 2;
				break
			case 0xdb:
			// str 32
				length = dataView.getUint32(position);
				position += 4;
				break
			default:
				throw new Error('Expected string')
		}
	}
	return readStringJS(length)
}


function readBin(length) {
	return currentUnpackr.copyBuffers ?
		// specifically use the copying slice (not the node one)
		Uint8Array.prototype.slice.call(src, position, position += length) :
		src.subarray(position, position += length)
}
function readExt(length) {
	let type = src[position++];
	if (currentExtensions[type]) {
		return currentExtensions[type](src.subarray(position, position += length))
	}
	else
		throw new Error('Unknown extension type ' + type)
}

var keyCache = new Array(4096);
function readKey() {
	let length = src[position++];
	if (length >= 0xa0 && length < 0xc0) {
		// fixstr, potentially use key cache
		length = length - 0xa0;
		if (srcStringEnd >= position) // if it has been extracted, must use it (and faster anyway)
			return srcString.slice(position - srcStringStart, (position += length) - srcStringStart)
		else if (!(srcStringEnd == 0 && srcEnd < 180))
			return readFixedString(length)
	} else { // not cacheable, go back and do a standard read
		position--;
		return read()
	}
	let key = ((length << 5) ^ (length > 1 ? dataView.getUint16(position) : length > 0 ? src[position] : 0)) & 0xfff;
	let entry = keyCache[key];
	let checkPosition = position;
	let end = position + length - 3;
	let chunk;
	let i = 0;
	if (entry && entry.bytes == length) {
		while (checkPosition < end) {
			chunk = dataView.getUint32(checkPosition);
			if (chunk != entry[i++]) {
				checkPosition = 0x70000000;
				break
			}
			checkPosition += 4;
		}
		end += 3;
		while (checkPosition < end) {
			chunk = src[checkPosition++];
			if (chunk != entry[i++]) {
				checkPosition = 0x70000000;
				break
			}
		}
		if (checkPosition === end) {
			position = checkPosition;
			return entry.string
		}
		end -= 3;
		checkPosition = position;
	}
	entry = [];
	keyCache[key] = entry;
	entry.bytes = length;
	while (checkPosition < end) {
		chunk = dataView.getUint32(checkPosition);
		entry.push(chunk);
		checkPosition += 4;
	}
	end += 3;
	while (checkPosition < end) {
		chunk = src[checkPosition++];
		entry.push(chunk);
	}
	// for small blocks, avoiding the overhead of the extract call is helpful
	let string = length < 16 ? shortStringInJS(length) : longStringInJS(length);
	if (string != null)
		return entry.string = string
	return entry.string = readFixedString(length)
}

// the registration of the record definition extension (as "r")
const recordDefinition = (id, highByte) => {
	var structure = read();
	let firstByte = id;
	if (highByte !== undefined) {
		id = id < 32 ? -((highByte << 5) + id) : ((highByte << 5) + id);
		structure.highByte = highByte;
	}
	let existingStructure = currentStructures[id];
	if (existingStructure && existingStructure.isShared) {
		(currentStructures.restoreStructures || (currentStructures.restoreStructures = []))[id] = existingStructure;
	}
	currentStructures[id] = structure;
	structure.read = createStructureReader(structure, firstByte);
	return structure.read()
};
currentExtensions[0] = () => {}; // notepack defines extension 0 to mean undefined, so use that as the default here
currentExtensions[0].noBuffer = true;

currentExtensions[0x65] = () => {
	let data = read();
	return (globalThis[data[0]] || Error)(data[1])
};

currentExtensions[0x69] = (data) => {
	// id extension (for structured clones)
	let id = dataView.getUint32(position - 4);
	if (!referenceMap)
		referenceMap = new Map();
	let token = src[position];
	let target;
	// TODO: handle Maps, Sets, and other types that can cycle; this is complicated, because you potentially need to read
	// ahead past references to record structure definitions
	if (token >= 0x90 && token < 0xa0 || token == 0xdc || token == 0xdd)
		target = [];
	else
		target = {};

	let refEntry = { target }; // a placeholder object
	referenceMap.set(id, refEntry);
	let targetProperties = read(); // read the next value as the target object to id
	if (refEntry.used) // there is a cycle, so we have to assign properties to original target
		return Object.assign(target, targetProperties)
	refEntry.target = targetProperties; // the placeholder wasn't used, replace with the deserialized one
	return targetProperties // no cycle, can just use the returned read object
};

currentExtensions[0x70] = (data) => {
	// pointer extension (for structured clones)
	let id = dataView.getUint32(position - 4);
	let refEntry = referenceMap.get(id);
	refEntry.used = true;
	return refEntry.target
};

currentExtensions[0x73] = () => new Set(read());

const typedArrays = ['Int8','Uint8','Uint8Clamped','Int16','Uint16','Int32','Uint32','Float32','Float64','BigInt64','BigUint64'].map(type => type + 'Array');

currentExtensions[0x74] = (data) => {
	let typeCode = data[0];
	let typedArrayName = typedArrays[typeCode];
	if (!typedArrayName)
		throw new Error('Could not find typed array for code ' + typeCode)
	// we have to always slice/copy here to get a new ArrayBuffer that is word/byte aligned
	return new globalThis[typedArrayName](Uint8Array.prototype.slice.call(data, 1).buffer)
};
currentExtensions[0x78] = () => {
	let data = read();
	return new RegExp(data[0], data[1])
};
const TEMP_BUNDLE = [];
currentExtensions[0x62] = (data) => {
	let dataSize = (data[0] << 24) + (data[1] << 16) + (data[2] << 8) + data[3];
	let dataPosition = position;
	position += dataSize - data.length;
	bundledStrings = TEMP_BUNDLE;
	bundledStrings = [readOnlyJSString(), readOnlyJSString()];
	bundledStrings.position0 = 0;
	bundledStrings.position1 = 0;
	bundledStrings.postBundlePosition = position;
	position = dataPosition;
	return read()
};

currentExtensions[0xff] = (data) => {
	// 32-bit date extension
	if (data.length == 4)
		return new Date((data[0] * 0x1000000 + (data[1] << 16) + (data[2] << 8) + data[3]) * 1000)
	else if (data.length == 8)
		return new Date(
			((data[0] << 22) + (data[1] << 14) + (data[2] << 6) + (data[3] >> 2)) / 1000000 +
			((data[3] & 0x3) * 0x100000000 + data[4] * 0x1000000 + (data[5] << 16) + (data[6] << 8) + data[7]) * 1000)
	else if (data.length == 12)// TODO: Implement support for negative
		return new Date(
			((data[0] << 24) + (data[1] << 16) + (data[2] << 8) + data[3]) / 1000000 +
			(((data[4] & 0x80) ? -0x1000000000000 : 0) + data[6] * 0x10000000000 + data[7] * 0x100000000 + data[8] * 0x1000000 + (data[9] << 16) + (data[10] << 8) + data[11]) * 1000)
	else
		return new Date('invalid')
}; // notepack defines extension 0 to mean undefined, so use that as the default here
// registration of bulk record definition?
// currentExtensions[0x52] = () =>

function saveState(callback) {
	let savedSrcEnd = srcEnd;
	let savedPosition = position;
	let savedStringPosition = stringPosition;
	let savedSrcStringStart = srcStringStart;
	let savedSrcStringEnd = srcStringEnd;
	let savedSrcString = srcString;
	let savedStrings = strings;
	let savedReferenceMap = referenceMap;
	let savedBundledStrings = bundledStrings;

	// TODO: We may need to revisit this if we do more external calls to user code (since it could be slow)
	let savedSrc = new Uint8Array(src.slice(0, srcEnd)); // we copy the data in case it changes while external data is processed
	let savedStructures = currentStructures;
	let savedStructuresContents = currentStructures.slice(0, currentStructures.length);
	let savedPackr = currentUnpackr;
	let savedSequentialMode = sequentialMode;
	let value = callback();
	srcEnd = savedSrcEnd;
	position = savedPosition;
	stringPosition = savedStringPosition;
	srcStringStart = savedSrcStringStart;
	srcStringEnd = savedSrcStringEnd;
	srcString = savedSrcString;
	strings = savedStrings;
	referenceMap = savedReferenceMap;
	bundledStrings = savedBundledStrings;
	src = savedSrc;
	sequentialMode = savedSequentialMode;
	currentStructures = savedStructures;
	currentStructures.splice(0, currentStructures.length, ...savedStructuresContents);
	currentUnpackr = savedPackr;
	dataView = new DataView(src.buffer, src.byteOffset, src.byteLength);
	return value
}
function clearSource() {
	src = null;
	referenceMap = null;
	currentStructures = null;
}

function addExtension(extension) {
	if (extension.unpack)
		currentExtensions[extension.type] = extension.unpack;
	else
		currentExtensions[extension.type] = extension;
}

const mult10 = new Array(147); // this is a table matching binary exponents to the multiplier to determine significant digit rounding
for (let i = 0; i < 256; i++) {
	mult10[i] = +('1e' + Math.floor(45.15 - i * 0.30103));
}
const Decoder = Unpackr;
var defaultUnpackr = new Unpackr({ useRecords: false });
const unpack = defaultUnpackr.unpack;
const unpackMultiple = defaultUnpackr.unpackMultiple;
const decode = defaultUnpackr.unpack;
const FLOAT32_OPTIONS = {
	NEVER: 0,
	ALWAYS: 1,
	DECIMAL_ROUND: 3,
	DECIMAL_FIT: 4
};
let f32Array = new Float32Array(1);
let u8Array = new Uint8Array(f32Array.buffer, 0, 4);
function roundFloat32(float32Number) {
	f32Array[0] = float32Number;
	let multiplier = mult10[((u8Array[3] & 0x7f) << 1) | (u8Array[2] >> 7)];
	return ((multiplier * float32Number + (float32Number > 0 ? 0.5 : -0.5)) >> 0) / multiplier
}

let textEncoder;
try {
	textEncoder = new TextEncoder();
} catch (error) {}
let extensions, extensionClasses;
const hasNodeBuffer = typeof Buffer !== 'undefined';
const ByteArrayAllocate = hasNodeBuffer ?
	function(length) { return Buffer.allocUnsafeSlow(length) } : Uint8Array;
const ByteArray = hasNodeBuffer ? Buffer : Uint8Array;
const MAX_BUFFER_SIZE = hasNodeBuffer ? 0x100000000 : 0x7fd00000;
let target, keysTarget;
let targetView;
let position$1 = 0;
let safeEnd;
let bundledStrings$1 = null;
const MAX_BUNDLE_SIZE = 0xf000;
const hasNonLatin = /[\u0080-\uFFFF]/;
const RECORD_SYMBOL = Symbol('record-id');
class Packr extends Unpackr {
	constructor(options) {
		super(options);
		this.offset = 0;
		let start;
		let hasSharedUpdate;
		let structures;
		let referenceMap;
		let lastSharedStructuresLength = 0;
		let encodeUtf8 = ByteArray.prototype.utf8Write ? function(string, position) {
			return target.utf8Write(string, position, 0xffffffff)
		} : (textEncoder && textEncoder.encodeInto) ?
			function(string, position) {
				return textEncoder.encodeInto(string, target.subarray(position)).written
			} : false;

		let packr = this;
		if (!options)
			options = {};
		let isSequential = options && options.sequential;
		let hasSharedStructures = options.structures || options.saveStructures;
		let maxSharedStructures = options.maxSharedStructures;
		if (maxSharedStructures == null)
			maxSharedStructures = hasSharedStructures ? 32 : 0;
		if (maxSharedStructures > 8160)
			throw new Error('Maximum maxSharedStructure is 8160')
		if (options.structuredClone && options.moreTypes == undefined) {
			options.moreTypes = true;
		}
		let maxOwnStructures = options.maxOwnStructures;
		if (maxOwnStructures == null)
			maxOwnStructures = hasSharedStructures ? 32 : 64;
		if (!this.structures && options.useRecords != false)
			this.structures = [];
		// two byte record ids for shared structures
		let useTwoByteRecords = maxSharedStructures > 32 || (maxOwnStructures + maxSharedStructures > 64);
		let sharedLimitId = maxSharedStructures + 0x40;
		let maxStructureId = maxSharedStructures + maxOwnStructures + 0x40;
		if (maxStructureId > 8256) {
			throw new Error('Maximum maxSharedStructure + maxOwnStructure is 8192')
		}
		let recordIdsToRemove = [];
		let transitionsCount = 0;
		let serializationsSinceTransitionRebuild = 0;

		this.pack = this.encode = function(value, encodeOptions) {
			if (!target) {
				target = new ByteArrayAllocate(8192);
				targetView = new DataView(target.buffer, 0, 8192);
				position$1 = 0;
			}
			safeEnd = target.length - 10;
			if (safeEnd - position$1 < 0x800) {
				// don't start too close to the end,
				target = new ByteArrayAllocate(target.length);
				targetView = new DataView(target.buffer, 0, target.length);
				safeEnd = target.length - 10;
				position$1 = 0;
			} else
				position$1 = (position$1 + 7) & 0x7ffffff8; // Word align to make any future copying of this buffer faster
			start = position$1;
			referenceMap = packr.structuredClone ? new Map() : null;
			if (packr.bundleStrings && typeof value !== 'string') {
				bundledStrings$1 = [];
				bundledStrings$1.size = Infinity; // force a new bundle start on first string
			} else
				bundledStrings$1 = null;
			structures = packr.structures;
			if (structures) {
				if (structures.uninitialized)
					structures = packr._mergeStructures(packr.getStructures());
				let sharedLength = structures.sharedLength || 0;
				if (sharedLength > maxSharedStructures) {
					//if (maxSharedStructures <= 32 && structures.sharedLength > 32) // TODO: could support this, but would need to update the limit ids
					throw new Error('Shared structures is larger than maximum shared structures, try increasing maxSharedStructures to ' + structures.sharedLength)
				}
				if (!structures.transitions) {
					// rebuild our structure transitions
					structures.transitions = Object.create(null);
					for (let i = 0; i < sharedLength; i++) {
						let keys = structures[i];
						if (!keys)
							continue
						let nextTransition, transition = structures.transitions;
						for (let j = 0, l = keys.length; j < l; j++) {
							let key = keys[j];
							nextTransition = transition[key];
							if (!nextTransition) {
								nextTransition = transition[key] = Object.create(null);
							}
							transition = nextTransition;
						}
						transition[RECORD_SYMBOL] = i + 0x40;
					}
					lastSharedStructuresLength = sharedLength;
				}
				if (!isSequential) {
					structures.nextId = sharedLength + 0x40;
				}
			}
			if (hasSharedUpdate)
				hasSharedUpdate = false;
			try {
				pack(value);
				if (bundledStrings$1) {
					writeBundles(start, pack);
				}
				packr.offset = position$1; // update the offset so next serialization doesn't write over our buffer, but can continue writing to same buffer sequentially
				if (referenceMap && referenceMap.idsToInsert) {
					position$1 += referenceMap.idsToInsert.length * 6;
					if (position$1 > safeEnd)
						makeRoom(position$1);
					packr.offset = position$1;
					let serialized = insertIds(target.subarray(start, position$1), referenceMap.idsToInsert);
					referenceMap = null;
					return serialized
				}
				if (encodeOptions & REUSE_BUFFER_MODE) {
					target.start = start;
					target.end = position$1;
					return target
				}
				return target.subarray(start, position$1) // position can change if we call pack again in saveStructures, so we get the buffer now
			} finally {
				if (structures) {
					if (serializationsSinceTransitionRebuild < 10)
						serializationsSinceTransitionRebuild++;
					let sharedLength = structures.sharedLength || maxSharedStructures;
					if (structures.length > sharedLength)
						structures.length = sharedLength;
					if (transitionsCount > 10000) {
						// force a rebuild occasionally after a lot of transitions so it can get cleaned up
						structures.transitions = null;
						serializationsSinceTransitionRebuild = 0;
						transitionsCount = 0;
						if (recordIdsToRemove.length > 0)
							recordIdsToRemove = [];
					} else if (recordIdsToRemove.length > 0 && !isSequential) {
						for (let i = 0, l = recordIdsToRemove.length; i < l; i++) {
							recordIdsToRemove[i][RECORD_SYMBOL] = 0;
						}
						recordIdsToRemove = [];
					}
					if (hasSharedUpdate && packr.saveStructures) {
						// we can't rely on start/end with REUSE_BUFFER_MODE since they will (probably) change when we save
						let returnBuffer = target.subarray(start, position$1);
						if (packr.saveStructures(structures, lastSharedStructuresLength) === false) {
							// get updated structures and try again if the update failed
							packr._mergeStructures(packr.getStructures());
							return packr.pack(value)
						}
						lastSharedStructuresLength = sharedLength;
						return returnBuffer
					}
				}
				if (encodeOptions & RESET_BUFFER_MODE)
					position$1 = start;
			}
		};
		const pack = (value) => {
			if (position$1 > safeEnd)
				target = makeRoom(position$1);

			var type = typeof value;
			var length;
			if (type === 'string') {
				let strLength = value.length;
				if (bundledStrings$1 && strLength >= 4 && strLength < 0x1000) {
					if ((bundledStrings$1.size += strLength) > MAX_BUNDLE_SIZE) {
						let extStart;
						let maxBytes = (bundledStrings$1[0] ? bundledStrings$1[0].length * 3 + bundledStrings$1[1].length : 0) + 10;
						if (position$1 + maxBytes > safeEnd)
							target = makeRoom(position$1 + maxBytes);
						if (bundledStrings$1.position) { // here we use the 0x62 extension to write the last bundle and reserve sapce for the reference pointer to the next/current bundle
							target[position$1] = 0xc8; // ext 16
							position$1 += 3; // reserve for the writing bundle size
							target[position$1++] = 0x62; // 'b'
							extStart = position$1 - start;
							position$1 += 4; // reserve for writing bundle reference
							writeBundles(start, pack); // write the last bundles
							targetView.setUint16(extStart + start - 3, position$1 - start - extStart);
						} else { // here we use the 0x62 extension just to reserve the space for the reference pointer to the bundle (will be updated once the bundle is written)
							target[position$1++] = 0xd6; // fixext 4
							target[position$1++] = 0x62; // 'b'
							extStart = position$1 - start;
							position$1 += 4; // reserve for writing bundle reference
						}
						bundledStrings$1 = ['', '']; // create new ones
						bundledStrings$1.size = 0;
						bundledStrings$1.position = extStart;
					}
					let twoByte = hasNonLatin.test(value);
					bundledStrings$1[twoByte ? 0 : 1] += value;
					target[position$1++] = 0xc1;
					pack(twoByte ? -strLength : strLength);
					return
				}
				let headerSize;
				// first we estimate the header size, so we can write to the correct location
				if (strLength < 0x20) {
					headerSize = 1;
				} else if (strLength < 0x100) {
					headerSize = 2;
				} else if (strLength < 0x10000) {
					headerSize = 3;
				} else {
					headerSize = 5;
				}
				let maxBytes = strLength * 3;
				if (position$1 + maxBytes > safeEnd)
					target = makeRoom(position$1 + maxBytes);

				if (strLength < 0x40 || !encodeUtf8) {
					let i, c1, c2, strPosition = position$1 + headerSize;
					for (i = 0; i < strLength; i++) {
						c1 = value.charCodeAt(i);
						if (c1 < 0x80) {
							target[strPosition++] = c1;
						} else if (c1 < 0x800) {
							target[strPosition++] = c1 >> 6 | 0xc0;
							target[strPosition++] = c1 & 0x3f | 0x80;
						} else if (
							(c1 & 0xfc00) === 0xd800 &&
							((c2 = value.charCodeAt(i + 1)) & 0xfc00) === 0xdc00
						) {
							c1 = 0x10000 + ((c1 & 0x03ff) << 10) + (c2 & 0x03ff);
							i++;
							target[strPosition++] = c1 >> 18 | 0xf0;
							target[strPosition++] = c1 >> 12 & 0x3f | 0x80;
							target[strPosition++] = c1 >> 6 & 0x3f | 0x80;
							target[strPosition++] = c1 & 0x3f | 0x80;
						} else {
							target[strPosition++] = c1 >> 12 | 0xe0;
							target[strPosition++] = c1 >> 6 & 0x3f | 0x80;
							target[strPosition++] = c1 & 0x3f | 0x80;
						}
					}
					length = strPosition - position$1 - headerSize;
				} else {
					length = encodeUtf8(value, position$1 + headerSize);
				}

				if (length < 0x20) {
					target[position$1++] = 0xa0 | length;
				} else if (length < 0x100) {
					if (headerSize < 2) {
						target.copyWithin(position$1 + 2, position$1 + 1, position$1 + 1 + length);
					}
					target[position$1++] = 0xd9;
					target[position$1++] = length;
				} else if (length < 0x10000) {
					if (headerSize < 3) {
						target.copyWithin(position$1 + 3, position$1 + 2, position$1 + 2 + length);
					}
					target[position$1++] = 0xda;
					target[position$1++] = length >> 8;
					target[position$1++] = length & 0xff;
				} else {
					if (headerSize < 5) {
						target.copyWithin(position$1 + 5, position$1 + 3, position$1 + 3 + length);
					}
					target[position$1++] = 0xdb;
					targetView.setUint32(position$1, length);
					position$1 += 4;
				}
				position$1 += length;
			} else if (type === 'number') {
				if (value >>> 0 === value) {// positive integer, 32-bit or less
					// positive uint
					if (value < 0x40 || (value < 0x80 && this.useRecords === false)) {
						target[position$1++] = value;
					} else if (value < 0x100) {
						target[position$1++] = 0xcc;
						target[position$1++] = value;
					} else if (value < 0x10000) {
						target[position$1++] = 0xcd;
						target[position$1++] = value >> 8;
						target[position$1++] = value & 0xff;
					} else {
						target[position$1++] = 0xce;
						targetView.setUint32(position$1, value);
						position$1 += 4;
					}
				} else if (value >> 0 === value) { // negative integer
					if (value >= -0x20) {
						target[position$1++] = 0x100 + value;
					} else if (value >= -0x80) {
						target[position$1++] = 0xd0;
						target[position$1++] = value + 0x100;
					} else if (value >= -0x8000) {
						target[position$1++] = 0xd1;
						targetView.setInt16(position$1, value);
						position$1 += 2;
					} else {
						target[position$1++] = 0xd2;
						targetView.setInt32(position$1, value);
						position$1 += 4;
					}
				} else {
					let useFloat32;
					if ((useFloat32 = this.useFloat32) > 0 && value < 0x100000000 && value >= -0x80000000) {
						target[position$1++] = 0xca;
						targetView.setFloat32(position$1, value);
						let xShifted;
						if (useFloat32 < 4 ||
								// this checks for rounding of numbers that were encoded in 32-bit float to nearest significant decimal digit that could be preserved
								((xShifted = value * mult10[((target[position$1] & 0x7f) << 1) | (target[position$1 + 1] >> 7)]) >> 0) === xShifted) {
							position$1 += 4;
							return
						} else
							position$1--; // move back into position for writing a double
					}
					target[position$1++] = 0xcb;
					targetView.setFloat64(position$1, value);
					position$1 += 8;
				}
			} else if (type === 'object') {
				if (!value)
					target[position$1++] = 0xc0;
				else {
					if (referenceMap) {
						let referee = referenceMap.get(value);
						if (referee) {
							if (!referee.id) {
								let idsToInsert = referenceMap.idsToInsert || (referenceMap.idsToInsert = []);
								referee.id = idsToInsert.push(referee);
							}
							target[position$1++] = 0xd6; // fixext 4
							target[position$1++] = 0x70; // "p" for pointer
							targetView.setUint32(position$1, referee.id);
							position$1 += 4;
							return
						} else
							referenceMap.set(value, { offset: position$1 - start });
					}
					let constructor = value.constructor;
					if (constructor === Object) {
						writeObject(value, true);
					} else if (constructor === Array) {
						length = value.length;
						if (length < 0x10) {
							target[position$1++] = 0x90 | length;
						} else if (length < 0x10000) {
							target[position$1++] = 0xdc;
							target[position$1++] = length >> 8;
							target[position$1++] = length & 0xff;
						} else {
							target[position$1++] = 0xdd;
							targetView.setUint32(position$1, length);
							position$1 += 4;
						}
						for (let i = 0; i < length; i++) {
							pack(value[i]);
						}
					} else if (constructor === Map) {
						length = value.size;
						if (length < 0x10) {
							target[position$1++] = 0x80 | length;
						} else if (length < 0x10000) {
							target[position$1++] = 0xde;
							target[position$1++] = length >> 8;
							target[position$1++] = length & 0xff;
						} else {
							target[position$1++] = 0xdf;
							targetView.setUint32(position$1, length);
							position$1 += 4;
						}
						for (let [ key, entryValue ] of value) {
							pack(key);
							pack(entryValue);
						}
					} else {
						for (let i = 0, l = extensions.length; i < l; i++) {
							let extensionClass = extensionClasses[i];
							if (value instanceof extensionClass) {
								let extension = extensions[i];
								if (extension.write) {
									if (extension.type) {
										target[position$1++] = 0xd4; // one byte "tag" extension
										target[position$1++] = extension.type;
										target[position$1++] = 0;
									}
									pack(extension.write.call(this, value));
									return
								}
								let currentTarget = target;
								let currentTargetView = targetView;
								let currentPosition = position$1;
								target = null;
								let result;
								try {
									result = extension.pack.call(this, value, (size) => {
										// restore target and use it
										target = currentTarget;
										currentTarget = null;
										position$1 += size;
										if (position$1 > safeEnd)
											makeRoom(position$1);
										return {
											target, targetView, position: position$1 - size
										}
									}, pack);
								} finally {
									// restore current target information (unless already restored)
									if (currentTarget) {
										target = currentTarget;
										targetView = currentTargetView;
										position$1 = currentPosition;
										safeEnd = target.length - 10;
									}
								}
								if (result) {
									if (result.length + position$1 > safeEnd)
										makeRoom(result.length + position$1);
									position$1 = writeExtensionData(result, target, position$1, extension.type);
								}
								return
							}
						}
						// no extension found, write as object
						writeObject(value, !value.hasOwnProperty); // if it doesn't have hasOwnProperty, don't do hasOwnProperty checks
					}
				}
			} else if (type === 'boolean') {
				target[position$1++] = value ? 0xc3 : 0xc2;
			} else if (type === 'bigint') {
				if (value < (BigInt(1)<<BigInt(63)) && value >= -(BigInt(1)<<BigInt(63))) {
					// use a signed int as long as it fits
					target[position$1++] = 0xd3;
					targetView.setBigInt64(position$1, value);
				} else if (value < (BigInt(1)<<BigInt(64)) && value > 0) {
					// if we can fit an unsigned int, use that
					target[position$1++] = 0xcf;
					targetView.setBigUint64(position$1, value);
				} else {
					// overflow
					if (this.largeBigIntToFloat) {
						target[position$1++] = 0xcb;
						targetView.setFloat64(position$1, Number(value));
					} else {
						throw new RangeError(value + ' was too large to fit in MessagePack 64-bit integer format, set largeBigIntToFloat to convert to float-64')
					}
				}
				position$1 += 8;
			} else if (type === 'undefined') {
				if (this.encodeUndefinedAsNil)
					target[position$1++] = 0xc0;
				else {
					target[position$1++] = 0xd4; // a number of implementations use fixext1 with type 0, data 0 to denote undefined, so we follow suite
					target[position$1++] = 0;
					target[position$1++] = 0;
				}
			} else if (type === 'function') {
				pack(this.writeFunction && this.writeFunction()); // if there is a writeFunction, use it, otherwise just encode as undefined
			} else {
				throw new Error('Unknown type: ' + type)
			}
		};

		const writeObject = this.useRecords === false ? this.variableMapSize ? (object) => {
			// this method is slightly slower, but generates "preferred serialization" (optimally small for smaller objects)
			let keys = Object.keys(object);
			let length = keys.length;
			if (length < 0x10) {
				target[position$1++] = 0x80 | length;
			} else if (length < 0x10000) {
				target[position$1++] = 0xde;
				target[position$1++] = length >> 8;
				target[position$1++] = length & 0xff;
			} else {
				target[position$1++] = 0xdf;
				targetView.setUint32(position$1, length);
				position$1 += 4;
			}
			let key;
			for (let i = 0; i < length; i++) {
				pack(key = keys[i]);
				pack(object[key]);
			}
		} :
		(object, safePrototype) => {
			target[position$1++] = 0xde; // always using map 16, so we can preallocate and set the length afterwards
			let objectOffset = position$1 - start;
			position$1 += 2;
			let size = 0;
			for (let key in object) {
				if (safePrototype || object.hasOwnProperty(key)) {
					pack(key);
					pack(object[key]);
					size++;
				}
			}
			target[objectOffset++ + start] = size >> 8;
			target[objectOffset + start] = size & 0xff;
		} :
		(options.progressiveRecords && !useTwoByteRecords) ?  // this is about 2% faster for highly stable structures, since it only requires one for-in loop (but much more expensive when new structure needs to be written)
		(object, safePrototype) => {
			let nextTransition, transition = structures.transitions || (structures.transitions = Object.create(null));
			let objectOffset = position$1++ - start;
			let wroteKeys;
			for (let key in object) {
				if (safePrototype || object.hasOwnProperty(key)) {
					nextTransition = transition[key];
					if (nextTransition)
						transition = nextTransition;
					else {
						// record doesn't exist, create full new record and insert it
						let keys = Object.keys(object);
						let lastTransition = transition;
						transition = structures.transitions;
						let newTransitions = 0;
						for (let i = 0, l = keys.length; i < l; i++) {
							let key = keys[i];
							nextTransition = transition[key];
							if (!nextTransition) {
								nextTransition = transition[key] = Object.create(null);
								newTransitions++;
							}
							transition = nextTransition;
						}
						if (objectOffset + start + 1 == position$1) {
							// first key, so we don't need to insert, we can just write record directly
							position$1--;
							newRecord(transition, keys, newTransitions);
						} else // otherwise we need to insert the record, moving existing data after the record
							insertNewRecord(transition, keys, objectOffset, newTransitions);
						wroteKeys = true;
						transition = lastTransition[key];
					}
					pack(object[key]);
				}
			}
			if (!wroteKeys) {
				let recordId = transition[RECORD_SYMBOL];
				if (recordId)
					target[objectOffset + start] = recordId;
				else
					insertNewRecord(transition, Object.keys(object), objectOffset, 0);
			}
		} :
		(object, safePrototype) => {
			let nextTransition, transition = structures.transitions || (structures.transitions = Object.create(null));
			let newTransitions = 0;
			for (let key in object) if (safePrototype || object.hasOwnProperty(key)) {
				nextTransition = transition[key];
				if (!nextTransition) {
					nextTransition = transition[key] = Object.create(null);
					newTransitions++;
				}
				transition = nextTransition;
			}
			let recordId = transition[RECORD_SYMBOL];
			if (recordId) {
				if (recordId >= 0x60 && useTwoByteRecords) {
					target[position$1++] = ((recordId -= 0x60) & 0x1f) + 0x60;
					target[position$1++] = recordId >> 5;
				} else
					target[position$1++] = recordId;
			} else {
				newRecord(transition, transition.__keys__ || Object.keys(object), newTransitions);
			}
			// now write the values
			for (let key in object)
				if (safePrototype || object.hasOwnProperty(key))
					pack(object[key]);
		};
		const makeRoom = (end) => {
			let newSize;
			if (end > 0x1000000) {
				// special handling for really large buffers
				if ((end - start) > MAX_BUFFER_SIZE)
					throw new Error('Packed buffer would be larger than maximum buffer size')
				newSize = Math.min(MAX_BUFFER_SIZE,
					Math.round(Math.max((end - start) * (end > 0x4000000 ? 1.25 : 2), 0x400000) / 0x1000) * 0x1000);
			} else // faster handling for smaller buffers
				newSize = ((Math.max((end - start) << 2, target.length - 1) >> 12) + 1) << 12;
			let newBuffer = new ByteArrayAllocate(newSize);
			targetView = new DataView(newBuffer.buffer, 0, newSize);
			end = Math.min(end, target.length);
			if (target.copy)
				target.copy(newBuffer, 0, start, end);
			else
				newBuffer.set(target.slice(start, end));
			position$1 -= start;
			start = 0;
			safeEnd = newBuffer.length - 10;
			return target = newBuffer
		};
		const newRecord = (transition, keys, newTransitions) => {
			let recordId = structures.nextId;
			if (!recordId)
				recordId = 0x40;
			if (recordId < sharedLimitId && this.shouldShareStructure && !this.shouldShareStructure(keys)) {
				recordId = structures.nextOwnId;
				if (!(recordId < maxStructureId))
					recordId = sharedLimitId;
				structures.nextOwnId = recordId + 1;
			} else {
				if (recordId >= maxStructureId)// cycle back around
					recordId = sharedLimitId;
				structures.nextId = recordId + 1;
			}
			let highByte = keys.highByte = recordId >= 0x60 && useTwoByteRecords ? (recordId - 0x60) >> 5 : -1;
			transition[RECORD_SYMBOL] = recordId;
			transition.__keys__ = keys;
			structures[recordId - 0x40] = keys;

			if (recordId < sharedLimitId) {
				keys.isShared = true;
				structures.sharedLength = recordId - 0x3f;
				hasSharedUpdate = true;
				if (highByte >= 0) {
					target[position$1++] = (recordId & 0x1f) + 0x60;
					target[position$1++] = highByte;
				} else {
					target[position$1++] = recordId;
				}
			} else {
				if (highByte >= 0) {
					target[position$1++] = 0xd5; // fixext 2
					target[position$1++] = 0x72; // "r" record defintion extension type
					target[position$1++] = (recordId & 0x1f) + 0x60;
					target[position$1++] = highByte;
				} else {
					target[position$1++] = 0xd4; // fixext 1
					target[position$1++] = 0x72; // "r" record defintion extension type
					target[position$1++] = recordId;
				}

				if (newTransitions)
					transitionsCount += serializationsSinceTransitionRebuild * newTransitions;
				// record the removal of the id, we can maintain our shared structure
				if (recordIdsToRemove.length >= maxOwnStructures)
					recordIdsToRemove.shift()[RECORD_SYMBOL] = 0; // we are cycling back through, and have to remove old ones
				recordIdsToRemove.push(transition);
				pack(keys);
			}
		};
		const insertNewRecord = (transition, keys, insertionOffset, newTransitions) => {
			let mainTarget = target;
			let mainPosition = position$1;
			let mainSafeEnd = safeEnd;
			let mainStart = start;
			target = keysTarget;
			position$1 = 0;
			start = 0;
			if (!target)
				keysTarget = target = new ByteArrayAllocate(8192);
			safeEnd = target.length - 10;
			newRecord(transition, keys, newTransitions);
			keysTarget = target;
			let keysPosition = position$1;
			target = mainTarget;
			position$1 = mainPosition;
			safeEnd = mainSafeEnd;
			start = mainStart;
			if (keysPosition > 1) {
				let newEnd = position$1 + keysPosition - 1;
				if (newEnd > safeEnd)
					makeRoom(newEnd);
				let insertionPosition = insertionOffset + start;
				target.copyWithin(insertionPosition + keysPosition, insertionPosition + 1, position$1);
				target.set(keysTarget.slice(0, keysPosition), insertionPosition);
				position$1 = newEnd;
			} else {
				target[insertionOffset + start] = keysTarget[0];
			}
		};
	}
	useBuffer(buffer) {
		// this means we are finished using our own buffer and we can write over it safely
		target = buffer;
		targetView = new DataView(target.buffer, target.byteOffset, target.byteLength);
		position$1 = 0;
	}
	clearSharedData() {
		if (this.structures)
			this.structures = [];
	}
}

extensionClasses = [ Date, Set, Error, RegExp, ArrayBuffer, Object.getPrototypeOf(Uint8Array.prototype).constructor /*TypedArray*/, C1Type ];
extensions = [{
	pack(date, allocateForWrite, pack) {
		let seconds = date.getTime() / 1000;
		if ((this.useTimestamp32 || date.getMilliseconds() === 0) && seconds >= 0 && seconds < 0x100000000) {
			// Timestamp 32
			let { target, targetView, position} = allocateForWrite(6);
			target[position++] = 0xd6;
			target[position++] = 0xff;
			targetView.setUint32(position, seconds);
		} else if (seconds > 0 && seconds < 0x100000000) {
			// Timestamp 64
			let { target, targetView, position} = allocateForWrite(10);
			target[position++] = 0xd7;
			target[position++] = 0xff;
			targetView.setUint32(position, date.getMilliseconds() * 4000000 + ((seconds / 1000 / 0x100000000) >> 0));
			targetView.setUint32(position + 4, seconds);
		} else if (isNaN(seconds)) {
			if (this.onInvalidDate) {
				allocateForWrite(0);
				return pack(this.onInvalidDate())
			}
			// Intentionally invalid timestamp
			let { target, targetView, position} = allocateForWrite(3);
			target[position++] = 0xd4;
			target[position++] = 0xff;
			target[position++] = 0xff;
		} else {
			// Timestamp 96
			let { target, targetView, position} = allocateForWrite(15);
			target[position++] = 0xc7;
			target[position++] = 12;
			target[position++] = 0xff;
			targetView.setUint32(position, date.getMilliseconds() * 1000000);
			targetView.setBigInt64(position + 4, BigInt(Math.floor(seconds)));
		}
	}
}, {
	pack(set, allocateForWrite, pack) {
		let array = Array.from(set);
		let { target, position} = allocateForWrite(this.moreTypes ? 3 : 0);
		if (this.moreTypes) {
			target[position++] = 0xd4;
			target[position++] = 0x73; // 's' for Set
			target[position++] = 0;
		}
		pack(array);
	}
}, {
	pack(error, allocateForWrite, pack) {
		let { target, position} = allocateForWrite(this.moreTypes ? 3 : 0);
		if (this.moreTypes) {
			target[position++] = 0xd4;
			target[position++] = 0x65; // 'e' for error
			target[position++] = 0;
		}
		pack([ error.name, error.message ]);
	}
}, {
	pack(regex, allocateForWrite, pack) {
		let { target, position} = allocateForWrite(this.moreTypes ? 3 : 0);
		if (this.moreTypes) {
			target[position++] = 0xd4;
			target[position++] = 0x78; // 'x' for regeXp
			target[position++] = 0;
		}
		pack([ regex.source, regex.flags ]);
	}
}, {
	pack(arrayBuffer, allocateForWrite) {
		if (this.moreTypes)
			writeExtBuffer(arrayBuffer, 0x10, allocateForWrite);
		else
			writeBuffer(hasNodeBuffer ? Buffer.from(arrayBuffer) : new Uint8Array(arrayBuffer), allocateForWrite);
	}
}, {
	pack(typedArray, allocateForWrite) {
		let constructor = typedArray.constructor;
		if (constructor !== ByteArray && this.moreTypes)
			writeExtBuffer(typedArray, typedArrays.indexOf(constructor.name), allocateForWrite);
		else
			writeBuffer(typedArray, allocateForWrite);
	}
}, {
	pack(c1, allocateForWrite) { // specific 0xC1 object
		let { target, position} = allocateForWrite(1);
		target[position] = 0xc1;
	}
}];

function writeExtBuffer(typedArray, type, allocateForWrite, encode) {
	let length = typedArray.byteLength;
	if (length + 1 < 0x100) {
		var { target, position } = allocateForWrite(4 + length);
		target[position++] = 0xc7;
		target[position++] = length + 1;
	} else if (length + 1 < 0x10000) {
		var { target, position } = allocateForWrite(5 + length);
		target[position++] = 0xc8;
		target[position++] = (length + 1) >> 8;
		target[position++] = (length + 1) & 0xff;
	} else {
		var { target, position, targetView } = allocateForWrite(7 + length);
		target[position++] = 0xc9;
		targetView.setUint32(position, length + 1); // plus one for the type byte
		position += 4;
	}
	target[position++] = 0x74; // "t" for typed array
	target[position++] = type;
	target.set(new Uint8Array(typedArray.buffer, typedArray.byteOffset, typedArray.byteLength), position);
}
function writeBuffer(buffer, allocateForWrite) {
	let length = buffer.byteLength;
	var target, position;
	if (length < 0x100) {
		var { target, position } = allocateForWrite(length + 2);
		target[position++] = 0xc4;
		target[position++] = length;
	} else if (length < 0x10000) {
		var { target, position } = allocateForWrite(length + 3);
		target[position++] = 0xc5;
		target[position++] = length >> 8;
		target[position++] = length & 0xff;
	} else {
		var { target, position, targetView } = allocateForWrite(length + 5);
		target[position++] = 0xc6;
		targetView.setUint32(position, length);
		position += 4;
	}
	target.set(buffer, position);
}

function writeExtensionData(result, target, position, type) {
	let length = result.length;
	switch (length) {
		case 1:
			target[position++] = 0xd4;
			break
		case 2:
			target[position++] = 0xd5;
			break
		case 4:
			target[position++] = 0xd6;
			break
		case 8:
			target[position++] = 0xd7;
			break
		case 16:
			target[position++] = 0xd8;
			break
		default:
			if (length < 0x100) {
				target[position++] = 0xc7;
				target[position++] = length;
			} else if (length < 0x10000) {
				target[position++] = 0xc8;
				target[position++] = length >> 8;
				target[position++] = length & 0xff;
			} else {
				target[position++] = 0xc9;
				target[position++] = length >> 24;
				target[position++] = (length >> 16) & 0xff;
				target[position++] = (length >> 8) & 0xff;
				target[position++] = length & 0xff;
			}
	}
	target[position++] = type;
	target.set(result, position);
	position += length;
	return position
}

function insertIds(serialized, idsToInsert) {
	// insert the ids that need to be referenced for structured clones
	let nextId;
	let distanceToMove = idsToInsert.length * 6;
	let lastEnd = serialized.length - distanceToMove;
	idsToInsert.sort((a, b) => a.offset > b.offset ? 1 : -1);
	while (nextId = idsToInsert.pop()) {
		let offset = nextId.offset;
		let id = nextId.id;
		serialized.copyWithin(offset + distanceToMove, offset, lastEnd);
		distanceToMove -= 6;
		let position = offset + distanceToMove;
		serialized[position++] = 0xd6;
		serialized[position++] = 0x69; // 'i'
		serialized[position++] = id >> 24;
		serialized[position++] = (id >> 16) & 0xff;
		serialized[position++] = (id >> 8) & 0xff;
		serialized[position++] = id & 0xff;
		lastEnd = offset;
	}
	return serialized
}

function writeBundles(start, pack) {
	if (bundledStrings$1.length > 0) {
		targetView.setUint32(bundledStrings$1.position + start, position$1 - bundledStrings$1.position - start);
		let writeStrings = bundledStrings$1;
		bundledStrings$1 = null;
		pack(writeStrings[0]);
		pack(writeStrings[1]);
	}
}

function addExtension$1(extension) {
	if (extension.Class) {
		if (!extension.pack && !extension.write)
			throw new Error('Extension has no pack or write function')
		if (extension.pack && !extension.type)
			throw new Error('Extension has no type (numeric code to identify the extension)')
		extensionClasses.unshift(extension.Class);
		extensions.unshift(extension);
	}
	addExtension(extension);
}

let defaultPackr = new Packr({ useRecords: false });
const pack = defaultPackr.pack;
const encode = defaultPackr.pack;
const Encoder = Packr;
const { NEVER, ALWAYS, DECIMAL_ROUND, DECIMAL_FIT } = FLOAT32_OPTIONS;
const REUSE_BUFFER_MODE = 512;
const RESET_BUFFER_MODE = 1024;

class PackrStream extends stream.Transform {
	constructor(options) {
		if (!options)
			options = {};
		options.writableObjectMode = true;
		super(options);
		options.sequential = true;
		this.packr = options.packr || new Packr(options);
	}
	_transform(value, encoding, callback) {
		this.push(this.packr.pack(value));
		callback();
	}
}

class UnpackrStream extends stream.Transform {
	constructor(options) {
		if (!options)
			options = {};
		options.objectMode = true;
		super(options);
		options.structures = [];
		this.unpackr = options.unpackr || new Unpackr(options);
	}
	_transform(chunk, encoding, callback) {
		if (this.incompleteBuffer) {
			chunk = Buffer.concat([this.incompleteBuffer, chunk]);
			this.incompleteBuffer = null;
		}
		let values;
		try {
			values = this.unpackr.unpackMultiple(chunk);
		} catch(error) {
			if (error.incomplete) {
				this.incompleteBuffer = chunk.slice(error.lastPosition);
				values = error.values;
			}
			else
				throw error
		} finally {
			for (let value of values || []) {
				if (value === null)
					value = this.getNullValue();
				this.push(value);
			}
		}
		if (callback) callback();
	}
	getNullValue() {
		return Symbol.for(null)
	}
}

/**
 * Given an Iterable first argument, returns an Iterable where each value is packed as a Buffer
 * If the argument is only Async Iterable, the return value will be an Async Iterable.
 * @param {Iterable|Iterator|AsyncIterable|AsyncIterator} objectIterator - iterable source, like a Readable object stream, an array, Set, or custom object
 * @param {options} [options] - msgpackr pack options
 * @returns {IterableIterator|Promise.<AsyncIterableIterator>}
 */
function packIter (objectIterator, options = {}) {
  if (!objectIterator || typeof objectIterator !== 'object') {
    throw new Error('first argument must be an Iterable, Async Iterable, or a Promise for an Async Iterable')
  } else if (typeof objectIterator[Symbol.iterator] === 'function') {
    return packIterSync(objectIterator, options)
  } else if (typeof objectIterator.then === 'function' || typeof objectIterator[Symbol.asyncIterator] === 'function') {
    return packIterAsync(objectIterator, options)
  } else {
    throw new Error('first argument must be an Iterable, Async Iterable, Iterator, Async Iterator, or a Promise')
  }
}

function * packIterSync (objectIterator, options) {
  const packr = new Packr(options);
  for (const value of objectIterator) {
    yield packr.pack(value);
  }
}

async function * packIterAsync (objectIterator, options) {
  const packr = new Packr(options);
  for await (const value of objectIterator) {
    yield packr.pack(value);
  }
}

/**
 * Given an Iterable/Iterator input which yields buffers, returns an IterableIterator which yields sync decoded objects
 * Or, given an Async Iterable/Iterator which yields promises resolving in buffers, returns an AsyncIterableIterator.
 * @param {Iterable|Iterator|AsyncIterable|AsyncIterableIterator} bufferIterator
 * @param {object} [options] - unpackr options
 * @returns {IterableIterator|Promise.<AsyncIterableIterator}
 */
function unpackIter (bufferIterator, options = {}) {
  if (!bufferIterator || typeof bufferIterator !== 'object') {
    throw new Error('first argument must be an Iterable, Async Iterable, Iterator, Async Iterator, or a promise')
  }

  const unpackr = new Unpackr(options);
  let incomplete;
  const parser = (chunk) => {
    let yields;
    // if there's incomplete data from previous chunk, concatinate and try again
    if (incomplete) {
      chunk = Buffer.concat([incomplete, chunk]);
      incomplete = undefined;
    }

    try {
      yields = unpackr.unpackMultiple(chunk);
    } catch (err) {
      if (err.incomplete) {
        incomplete = chunk.slice(err.lastPosition);
        yields = err.values;
      } else {
        throw err
      }
    }
    return yields
  };

  if (typeof bufferIterator[Symbol.iterator] === 'function') {
    return (function * iter () {
      for (const value of bufferIterator) {
        yield * parser(value);
      }
    })()
  } else if (typeof bufferIterator[Symbol.asyncIterator] === 'function') {
    return (async function * iter () {
      for await (const value of bufferIterator) {
        yield * parser(value);
      }
    })()
  }
}
const decodeIter = unpackIter;
const encodeIter = packIter;

const useRecords = false;
const mapsAsObjects = true;

const nativeAccelerationDisabled = process.env.MSGPACKR_NATIVE_ACCELERATION_DISABLED !== undefined && process.env.MSGPACKR_NATIVE_ACCELERATION_DISABLED.toLowerCase() === 'true';

if (!nativeAccelerationDisabled) {
	let extractor;
	try {
		if (typeof require == 'function')
			extractor = require('msgpackr-extract');
		else
			extractor = module$1.createRequire((typeof document === 'undefined' ? new (require('u' + 'rl').URL)('file:' + __filename).href : (document.currentScript && document.currentScript.src || new URL('node.cjs', document.baseURI).href)))('msgpackr-extract');
		if (extractor)
			setExtractor(extractor.extractStrings);
	} catch (error) {
		// native module is optional
	}
}

exports.ALWAYS = ALWAYS;
exports.C1 = C1;
exports.DECIMAL_FIT = DECIMAL_FIT;
exports.DECIMAL_ROUND = DECIMAL_ROUND;
exports.Decoder = Decoder;
exports.DecoderStream = UnpackrStream;
exports.Encoder = Encoder;
exports.EncoderStream = PackrStream;
exports.FLOAT32_OPTIONS = FLOAT32_OPTIONS;
exports.NEVER = NEVER;
exports.Packr = Packr;
exports.PackrStream = PackrStream;
exports.Unpackr = Unpackr;
exports.UnpackrStream = UnpackrStream;
exports.addExtension = addExtension$1;
exports.clearSource = clearSource;
exports.decode = decode;
exports.decodeIter = decodeIter;
exports.encode = encode;
exports.encodeIter = encodeIter;
exports.mapsAsObjects = mapsAsObjects;
exports.pack = pack;
exports.roundFloat32 = roundFloat32;
exports.unpack = unpack;
exports.unpackMultiple = unpackMultiple;
exports.useRecords = useRecords;

}).call(this)}).call(this,require('_process'),require("buffer").Buffer,"/node_modules/msgpackr/dist/node.cjs")
},{"_process":30,"buffer":25,"module":22,"msgpackr-extract":3,"stream":32}],5:[function(require,module,exports){
(function (process){(function (){
var fs = require('fs')
var path = require('path')

// Workaround to fix webpack's build warnings: 'the request of a dependency is an expression'
var runtimeRequire = typeof __webpack_require__ === 'function' ? __non_webpack_require__ : require // eslint-disable-line

var vars = (process.config && process.config.variables) || {}
var prebuildsOnly = !!process.env.PREBUILDS_ONLY
var abi = process.versions.modules // TODO: support old node where this is undef
var runtime = isElectron() ? 'electron' : 'node'
var arch = process.arch
var platform = process.platform
var libc = process.env.LIBC || (isAlpine(platform) ? 'musl' : 'glibc')
var armv = process.env.ARM_VERSION || (arch === 'arm64' ? '8' : vars.arm_version) || ''
var uv = (process.versions.uv || '').split('.')[0]

module.exports = load

function load (dir) {
  return runtimeRequire(load.path(dir))
}

load.path = function (dir) {
  dir = path.resolve(dir || '.')
  var packageName
  try {
    packageName = runtimeRequire(path.join(dir, 'package.json')).name
    var varName = packageName.toUpperCase().replace(/-/g, '_') + '_PREBUILD'
    if (process.env[varName]) dir = process.env[varName]
  } catch (err) {}
  if (!prebuildsOnly) {
    var release = getFirst(path.join(dir, 'build/Release'), matchBuild)
    if (release) return release

    var debug = getFirst(path.join(dir, 'build/Debug'), matchBuild)
    if (debug) return debug
  }

  var prebuild = resolve(dir)
  if (prebuild) return prebuild

  var nearby = resolve(path.dirname(process.execPath))
  if (nearby) return nearby

  var platformPackage = (packageName[0] == '@' ? '' : '@' + packageName + '/') + packageName + '-' + platform + '-' + arch
  try {
    var prebuildPackage = path.dirname(require('module').createRequire(path.join(dir, 'package.json')).resolve(platformPackage))
    return resolveFile(prebuildPackage)
  } catch(error) {}

  var target = [
    'platform=' + platform,
    'arch=' + arch,
    'runtime=' + runtime,
    'abi=' + abi,
    'uv=' + uv,
    armv ? 'armv=' + armv : '',
    'libc=' + libc,
    'node=' + process.versions.node,
    process.versions.electron ? 'electron=' + process.versions.electron : '',
    typeof __webpack_require__ === 'function' ? 'webpack=true' : '' // eslint-disable-line
  ].filter(Boolean).join(' ')

  throw new Error('No native build was found for ' + target + '\n    loaded from: ' + dir + ' and package: ' + platformPackage + '\n')

  function resolve (dir) {
    // Find matching "prebuilds/<platform>-<arch>" directory
    var tuples = readdirSync(path.join(dir, 'prebuilds')).map(parseTuple)
    var tuple = tuples.filter(matchTuple(platform, arch)).sort(compareTuples)[0]
    if (!tuple) return
    return resolveFile(path.join(dir, 'prebuilds', tuple.name))
  }
  function resolveFile (prebuilds) {
    // Find most specific flavor first
    var parsed = readdirSync(prebuilds).map(parseTags)
    var candidates = parsed.filter(matchTags(runtime, abi))
    var winner = candidates.sort(compareTags(runtime))[0]
    if (winner) return path.join(prebuilds, winner.file)
  }
}

function readdirSync (dir) {
  try {
    return fs.readdirSync(dir)
  } catch (err) {
    return []
  }
}

function getFirst (dir, filter) {
  var files = readdirSync(dir).filter(filter)
  return files[0] && path.join(dir, files[0])
}

function matchBuild (name) {
  return /\.node$/.test(name)
}

function parseTuple (name) {
  // Example: darwin-x64+arm64
  var arr = name.split('-')
  if (arr.length !== 2) return

  var platform = arr[0]
  var architectures = arr[1].split('+')

  if (!platform) return
  if (!architectures.length) return
  if (!architectures.every(Boolean)) return

  return { name, platform, architectures }
}

function matchTuple (platform, arch) {
  return function (tuple) {
    if (tuple == null) return false
    if (tuple.platform !== platform) return false
    return tuple.architectures.includes(arch)
  }
}

function compareTuples (a, b) {
  // Prefer single-arch prebuilds over multi-arch
  return a.architectures.length - b.architectures.length
}

function parseTags (file) {
  var arr = file.split('.')
  var extension = arr.pop()
  var tags = { file: file, specificity: 0 }

  if (extension !== 'node') return

  for (var i = 0; i < arr.length; i++) {
    var tag = arr[i]

    if (tag === 'node' || tag === 'electron' || tag === 'node-webkit') {
      tags.runtime = tag
    } else if (tag === 'napi') {
      tags.napi = true
    } else if (tag.slice(0, 3) === 'abi') {
      tags.abi = tag.slice(3)
    } else if (tag.slice(0, 2) === 'uv') {
      tags.uv = tag.slice(2)
    } else if (tag.slice(0, 4) === 'armv') {
      tags.armv = tag.slice(4)
    } else if (tag === 'glibc' || tag === 'musl') {
      tags.libc = tag
    } else {
      continue
    }

    tags.specificity++
  }

  return tags
}

function matchTags (runtime, abi) {
  return function (tags) {
    if (tags == null) return false
    if (tags.runtime !== runtime && !runtimeAgnostic(tags)) return false
    if (tags.abi !== abi && !tags.napi) return false
    if (tags.uv && tags.uv !== uv) return false
    if (tags.armv && tags.armv !== armv) return false
    if (tags.libc && tags.libc !== libc) return false

    return true
  }
}

function runtimeAgnostic (tags) {
  return tags.runtime === 'node' && tags.napi
}

function compareTags (runtime) {
  // Precedence: non-agnostic runtime, abi over napi, then by specificity.
  return function (a, b) {
    if (a.runtime !== b.runtime) {
      return a.runtime === runtime ? -1 : 1
    } else if (a.abi !== b.abi) {
      return a.abi ? -1 : 1
    } else if (a.specificity !== b.specificity) {
      return a.specificity > b.specificity ? -1 : 1
    } else {
      return 0
    }
  }
}

function isElectron () {
  if (process.versions && process.versions.electron) return true
  if (process.env.ELECTRON_RUN_AS_NODE) return true
  return typeof window !== 'undefined' && window.process && window.process.type === 'renderer'
}

function isAlpine (platform) {
  return platform === 'linux' && fs.existsSync('/etc/alpine-release')
}

// Exposed for unit tests
// TODO: move to lib
load.parseTags = parseTags
load.matchTags = matchTags
load.compareTags = compareTags
load.parseTuple = parseTuple
load.matchTuple = matchTuple
load.compareTuples = compareTuples
}).call(this)}).call(this,require('_process'))
},{"_process":30,"fs":22,"module":22,"path":29}],6:[function(require,module,exports){
// Top level file is just a mixin of submodules & constants
'use strict';

const { Deflate, deflate, deflateRaw, gzip } = require('./lib/deflate');

const { Inflate, inflate, inflateRaw, ungzip } = require('./lib/inflate');

const constants = require('./lib/zlib/constants');

module.exports.Deflate = Deflate;
module.exports.deflate = deflate;
module.exports.deflateRaw = deflateRaw;
module.exports.gzip = gzip;
module.exports.Inflate = Inflate;
module.exports.inflate = inflate;
module.exports.inflateRaw = inflateRaw;
module.exports.ungzip = ungzip;
module.exports.constants = constants;

},{"./lib/deflate":7,"./lib/inflate":8,"./lib/zlib/constants":12}],7:[function(require,module,exports){
'use strict';


const zlib_deflate = require('./zlib/deflate');
const utils        = require('./utils/common');
const strings      = require('./utils/strings');
const msg          = require('./zlib/messages');
const ZStream      = require('./zlib/zstream');

const toString = Object.prototype.toString;

/* Public constants ==========================================================*/
/* ===========================================================================*/

const {
  Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FULL_FLUSH, Z_FINISH,
  Z_OK, Z_STREAM_END,
  Z_DEFAULT_COMPRESSION,
  Z_DEFAULT_STRATEGY,
  Z_DEFLATED
} = require('./zlib/constants');

/* ===========================================================================*/


/**
 * class Deflate
 *
 * Generic JS-style wrapper for zlib calls. If you don't need
 * streaming behaviour - use more simple functions: [[deflate]],
 * [[deflateRaw]] and [[gzip]].
 **/

/* internal
 * Deflate.chunks -> Array
 *
 * Chunks of output data, if [[Deflate#onData]] not overridden.
 **/

/**
 * Deflate.result -> Uint8Array
 *
 * Compressed result, generated by default [[Deflate#onData]]
 * and [[Deflate#onEnd]] handlers. Filled after you push last chunk
 * (call [[Deflate#push]] with `Z_FINISH` / `true` param).
 **/

/**
 * Deflate.err -> Number
 *
 * Error code after deflate finished. 0 (Z_OK) on success.
 * You will not need it in real life, because deflate errors
 * are possible only on wrong options or bad `onData` / `onEnd`
 * custom handlers.
 **/

/**
 * Deflate.msg -> String
 *
 * Error message, if [[Deflate.err]] != 0
 **/


/**
 * new Deflate(options)
 * - options (Object): zlib deflate options.
 *
 * Creates new deflator instance with specified params. Throws exception
 * on bad params. Supported options:
 *
 * - `level`
 * - `windowBits`
 * - `memLevel`
 * - `strategy`
 * - `dictionary`
 *
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 * for more information on these.
 *
 * Additional options, for internal needs:
 *
 * - `chunkSize` - size of generated data chunks (16K by default)
 * - `raw` (Boolean) - do raw deflate
 * - `gzip` (Boolean) - create gzip wrapper
 * - `header` (Object) - custom header for gzip
 *   - `text` (Boolean) - true if compressed data believed to be text
 *   - `time` (Number) - modification time, unix timestamp
 *   - `os` (Number) - operation system code
 *   - `extra` (Array) - array of bytes with extra data (max 65536)
 *   - `name` (String) - file name (binary string)
 *   - `comment` (String) - comment (binary string)
 *   - `hcrc` (Boolean) - true if header crc should be added
 *
 * ##### Example:
 *
 * ```javascript
 * const pako = require('pako')
 *   , chunk1 = new Uint8Array([1,2,3,4,5,6,7,8,9])
 *   , chunk2 = new Uint8Array([10,11,12,13,14,15,16,17,18,19]);
 *
 * const deflate = new pako.Deflate({ level: 3});
 *
 * deflate.push(chunk1, false);
 * deflate.push(chunk2, true);  // true -> last chunk
 *
 * if (deflate.err) { throw new Error(deflate.err); }
 *
 * console.log(deflate.result);
 * ```
 **/
function Deflate(options) {
  this.options = utils.assign({
    level: Z_DEFAULT_COMPRESSION,
    method: Z_DEFLATED,
    chunkSize: 16384,
    windowBits: 15,
    memLevel: 8,
    strategy: Z_DEFAULT_STRATEGY
  }, options || {});

  let opt = this.options;

  if (opt.raw && (opt.windowBits > 0)) {
    opt.windowBits = -opt.windowBits;
  }

  else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) {
    opt.windowBits += 16;
  }

  this.err    = 0;      // error code, if happens (0 = Z_OK)
  this.msg    = '';     // error message
  this.ended  = false;  // used to avoid multiple onEnd() calls
  this.chunks = [];     // chunks of compressed data

  this.strm = new ZStream();
  this.strm.avail_out = 0;

  let status = zlib_deflate.deflateInit2(
    this.strm,
    opt.level,
    opt.method,
    opt.windowBits,
    opt.memLevel,
    opt.strategy
  );

  if (status !== Z_OK) {
    throw new Error(msg[status]);
  }

  if (opt.header) {
    zlib_deflate.deflateSetHeader(this.strm, opt.header);
  }

  if (opt.dictionary) {
    let dict;
    // Convert data if needed
    if (typeof opt.dictionary === 'string') {
      // If we need to compress text, change encoding to utf8.
      dict = strings.string2buf(opt.dictionary);
    } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {
      dict = new Uint8Array(opt.dictionary);
    } else {
      dict = opt.dictionary;
    }

    status = zlib_deflate.deflateSetDictionary(this.strm, dict);

    if (status !== Z_OK) {
      throw new Error(msg[status]);
    }

    this._dict_set = true;
  }
}

/**
 * Deflate#push(data[, flush_mode]) -> Boolean
 * - data (Uint8Array|ArrayBuffer|String): input data. Strings will be
 *   converted to utf8 byte sequence.
 * - flush_mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.
 *   See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH.
 *
 * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with
 * new compressed chunks. Returns `true` on success. The last data block must
 * have `flush_mode` Z_FINISH (or `true`). That will flush internal pending
 * buffers and call [[Deflate#onEnd]].
 *
 * On fail call [[Deflate#onEnd]] with error code and return false.
 *
 * ##### Example
 *
 * ```javascript
 * push(chunk, false); // push one of data chunks
 * ...
 * push(chunk, true);  // push last chunk
 * ```
 **/
Deflate.prototype.push = function (data, flush_mode) {
  const strm = this.strm;
  const chunkSize = this.options.chunkSize;
  let status, _flush_mode;

  if (this.ended) { return false; }

  if (flush_mode === ~~flush_mode) _flush_mode = flush_mode;
  else _flush_mode = flush_mode === true ? Z_FINISH : Z_NO_FLUSH;

  // Convert data if needed
  if (typeof data === 'string') {
    // If we need to compress text, change encoding to utf8.
    strm.input = strings.string2buf(data);
  } else if (toString.call(data) === '[object ArrayBuffer]') {
    strm.input = new Uint8Array(data);
  } else {
    strm.input = data;
  }

  strm.next_in = 0;
  strm.avail_in = strm.input.length;

  for (;;) {
    if (strm.avail_out === 0) {
      strm.output = new Uint8Array(chunkSize);
      strm.next_out = 0;
      strm.avail_out = chunkSize;
    }

    // Make sure avail_out > 6 to avoid repeating markers
    if ((_flush_mode === Z_SYNC_FLUSH || _flush_mode === Z_FULL_FLUSH) && strm.avail_out <= 6) {
      this.onData(strm.output.subarray(0, strm.next_out));
      strm.avail_out = 0;
      continue;
    }

    status = zlib_deflate.deflate(strm, _flush_mode);

    // Ended => flush and finish
    if (status === Z_STREAM_END) {
      if (strm.next_out > 0) {
        this.onData(strm.output.subarray(0, strm.next_out));
      }
      status = zlib_deflate.deflateEnd(this.strm);
      this.onEnd(status);
      this.ended = true;
      return status === Z_OK;
    }

    // Flush if out buffer full
    if (strm.avail_out === 0) {
      this.onData(strm.output);
      continue;
    }

    // Flush if requested and has data
    if (_flush_mode > 0 && strm.next_out > 0) {
      this.onData(strm.output.subarray(0, strm.next_out));
      strm.avail_out = 0;
      continue;
    }

    if (strm.avail_in === 0) break;
  }

  return true;
};


/**
 * Deflate#onData(chunk) -> Void
 * - chunk (Uint8Array): output data.
 *
 * By default, stores data blocks in `chunks[]` property and glue
 * those in `onEnd`. Override this handler, if you need another behaviour.
 **/
Deflate.prototype.onData = function (chunk) {
  this.chunks.push(chunk);
};


/**
 * Deflate#onEnd(status) -> Void
 * - status (Number): deflate status. 0 (Z_OK) on success,
 *   other if not.
 *
 * Called once after you tell deflate that the input stream is
 * complete (Z_FINISH). By default - join collected chunks,
 * free memory and fill `results` / `err` properties.
 **/
Deflate.prototype.onEnd = function (status) {
  // On success - join
  if (status === Z_OK) {
    this.result = utils.flattenChunks(this.chunks);
  }
  this.chunks = [];
  this.err = status;
  this.msg = this.strm.msg;
};


/**
 * deflate(data[, options]) -> Uint8Array
 * - data (Uint8Array|ArrayBuffer|String): input data to compress.
 * - options (Object): zlib deflate options.
 *
 * Compress `data` with deflate algorithm and `options`.
 *
 * Supported options are:
 *
 * - level
 * - windowBits
 * - memLevel
 * - strategy
 * - dictionary
 *
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 * for more information on these.
 *
 * Sugar (options):
 *
 * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
 *   negative windowBits implicitly.
 *
 * ##### Example:
 *
 * ```javascript
 * const pako = require('pako')
 * const data = new Uint8Array([1,2,3,4,5,6,7,8,9]);
 *
 * console.log(pako.deflate(data));
 * ```
 **/
function deflate(input, options) {
  const deflator = new Deflate(options);

  deflator.push(input, true);

  // That will never happens, if you don't cheat with options :)
  if (deflator.err) { throw deflator.msg || msg[deflator.err]; }

  return deflator.result;
}


/**
 * deflateRaw(data[, options]) -> Uint8Array
 * - data (Uint8Array|ArrayBuffer|String): input data to compress.
 * - options (Object): zlib deflate options.
 *
 * The same as [[deflate]], but creates raw data, without wrapper
 * (header and adler32 crc).
 **/
function deflateRaw(input, options) {
  options = options || {};
  options.raw = true;
  return deflate(input, options);
}


/**
 * gzip(data[, options]) -> Uint8Array
 * - data (Uint8Array|ArrayBuffer|String): input data to compress.
 * - options (Object): zlib deflate options.
 *
 * The same as [[deflate]], but create gzip wrapper instead of
 * deflate one.
 **/
function gzip(input, options) {
  options = options || {};
  options.gzip = true;
  return deflate(input, options);
}


module.exports.Deflate = Deflate;
module.exports.deflate = deflate;
module.exports.deflateRaw = deflateRaw;
module.exports.gzip = gzip;
module.exports.constants = require('./zlib/constants');

},{"./utils/common":9,"./utils/strings":10,"./zlib/constants":12,"./zlib/deflate":14,"./zlib/messages":19,"./zlib/zstream":21}],8:[function(require,module,exports){
'use strict';


const zlib_inflate = require('./zlib/inflate');
const utils        = require('./utils/common');
const strings      = require('./utils/strings');
const msg          = require('./zlib/messages');
const ZStream      = require('./zlib/zstream');
const GZheader     = require('./zlib/gzheader');

const toString = Object.prototype.toString;

/* Public constants ==========================================================*/
/* ===========================================================================*/

const {
  Z_NO_FLUSH, Z_FINISH,
  Z_OK, Z_STREAM_END, Z_NEED_DICT, Z_STREAM_ERROR, Z_DATA_ERROR, Z_MEM_ERROR
} = require('./zlib/constants');

/* ===========================================================================*/


/**
 * class Inflate
 *
 * Generic JS-style wrapper for zlib calls. If you don't need
 * streaming behaviour - use more simple functions: [[inflate]]
 * and [[inflateRaw]].
 **/

/* internal
 * inflate.chunks -> Array
 *
 * Chunks of output data, if [[Inflate#onData]] not overridden.
 **/

/**
 * Inflate.result -> Uint8Array|String
 *
 * Uncompressed result, generated by default [[Inflate#onData]]
 * and [[Inflate#onEnd]] handlers. Filled after you push last chunk
 * (call [[Inflate#push]] with `Z_FINISH` / `true` param).
 **/

/**
 * Inflate.err -> Number
 *
 * Error code after inflate finished. 0 (Z_OK) on success.
 * Should be checked if broken data possible.
 **/

/**
 * Inflate.msg -> String
 *
 * Error message, if [[Inflate.err]] != 0
 **/


/**
 * new Inflate(options)
 * - options (Object): zlib inflate options.
 *
 * Creates new inflator instance with specified params. Throws exception
 * on bad params. Supported options:
 *
 * - `windowBits`
 * - `dictionary`
 *
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 * for more information on these.
 *
 * Additional options, for internal needs:
 *
 * - `chunkSize` - size of generated data chunks (16K by default)
 * - `raw` (Boolean) - do raw inflate
 * - `to` (String) - if equal to 'string', then result will be converted
 *   from utf8 to utf16 (javascript) string. When string output requested,
 *   chunk length can differ from `chunkSize`, depending on content.
 *
 * By default, when no options set, autodetect deflate/gzip data format via
 * wrapper header.
 *
 * ##### Example:
 *
 * ```javascript
 * const pako = require('pako')
 * const chunk1 = new Uint8Array([1,2,3,4,5,6,7,8,9])
 * const chunk2 = new Uint8Array([10,11,12,13,14,15,16,17,18,19]);
 *
 * const inflate = new pako.Inflate({ level: 3});
 *
 * inflate.push(chunk1, false);
 * inflate.push(chunk2, true);  // true -> last chunk
 *
 * if (inflate.err) { throw new Error(inflate.err); }
 *
 * console.log(inflate.result);
 * ```
 **/
function Inflate(options) {
  this.options = utils.assign({
    chunkSize: 1024 * 64,
    windowBits: 15,
    to: ''
  }, options || {});

  const opt = this.options;

  // Force window size for `raw` data, if not set directly,
  // because we have no header for autodetect.
  if (opt.raw && (opt.windowBits >= 0) && (opt.windowBits < 16)) {
    opt.windowBits = -opt.windowBits;
    if (opt.windowBits === 0) { opt.windowBits = -15; }
  }

  // If `windowBits` not defined (and mode not raw) - set autodetect flag for gzip/deflate
  if ((opt.windowBits >= 0) && (opt.windowBits < 16) &&
      !(options && options.windowBits)) {
    opt.windowBits += 32;
  }

  // Gzip header has no info about windows size, we can do autodetect only
  // for deflate. So, if window size not set, force it to max when gzip possible
  if ((opt.windowBits > 15) && (opt.windowBits < 48)) {
    // bit 3 (16) -> gzipped data
    // bit 4 (32) -> autodetect gzip/deflate
    if ((opt.windowBits & 15) === 0) {
      opt.windowBits |= 15;
    }
  }

  this.err    = 0;      // error code, if happens (0 = Z_OK)
  this.msg    = '';     // error message
  this.ended  = false;  // used to avoid multiple onEnd() calls
  this.chunks = [];     // chunks of compressed data

  this.strm   = new ZStream();
  this.strm.avail_out = 0;

  let status  = zlib_inflate.inflateInit2(
    this.strm,
    opt.windowBits
  );

  if (status !== Z_OK) {
    throw new Error(msg[status]);
  }

  this.header = new GZheader();

  zlib_inflate.inflateGetHeader(this.strm, this.header);

  // Setup dictionary
  if (opt.dictionary) {
    // Convert data if needed
    if (typeof opt.dictionary === 'string') {
      opt.dictionary = strings.string2buf(opt.dictionary);
    } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {
      opt.dictionary = new Uint8Array(opt.dictionary);
    }
    if (opt.raw) { //In raw mode we need to set the dictionary early
      status = zlib_inflate.inflateSetDictionary(this.strm, opt.dictionary);
      if (status !== Z_OK) {
        throw new Error(msg[status]);
      }
    }
  }
}

/**
 * Inflate#push(data[, flush_mode]) -> Boolean
 * - data (Uint8Array|ArrayBuffer): input data
 * - flush_mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE
 *   flush modes. See constants. Skipped or `false` means Z_NO_FLUSH,
 *   `true` means Z_FINISH.
 *
 * Sends input data to inflate pipe, generating [[Inflate#onData]] calls with
 * new output chunks. Returns `true` on success. If end of stream detected,
 * [[Inflate#onEnd]] will be called.
 *
 * `flush_mode` is not needed for normal operation, because end of stream
 * detected automatically. You may try to use it for advanced things, but
 * this functionality was not tested.
 *
 * On fail call [[Inflate#onEnd]] with error code and return false.
 *
 * ##### Example
 *
 * ```javascript
 * push(chunk, false); // push one of data chunks
 * ...
 * push(chunk, true);  // push last chunk
 * ```
 **/
Inflate.prototype.push = function (data, flush_mode) {
  const strm = this.strm;
  const chunkSize = this.options.chunkSize;
  const dictionary = this.options.dictionary;
  let status, _flush_mode, last_avail_out;

  if (this.ended) return false;

  if (flush_mode === ~~flush_mode) _flush_mode = flush_mode;
  else _flush_mode = flush_mode === true ? Z_FINISH : Z_NO_FLUSH;

  // Convert data if needed
  if (toString.call(data) === '[object ArrayBuffer]') {
    strm.input = new Uint8Array(data);
  } else {
    strm.input = data;
  }

  strm.next_in = 0;
  strm.avail_in = strm.input.length;

  for (;;) {
    if (strm.avail_out === 0) {
      strm.output = new Uint8Array(chunkSize);
      strm.next_out = 0;
      strm.avail_out = chunkSize;
    }

    status = zlib_inflate.inflate(strm, _flush_mode);

    if (status === Z_NEED_DICT && dictionary) {
      status = zlib_inflate.inflateSetDictionary(strm, dictionary);

      if (status === Z_OK) {
        status = zlib_inflate.inflate(strm, _flush_mode);
      } else if (status === Z_DATA_ERROR) {
        // Replace code with more verbose
        status = Z_NEED_DICT;
      }
    }

    // Skip snyc markers if more data follows and not raw mode
    while (strm.avail_in > 0 &&
           status === Z_STREAM_END &&
           strm.state.wrap > 0 &&
           data[strm.next_in] !== 0)
    {
      zlib_inflate.inflateReset(strm);
      status = zlib_inflate.inflate(strm, _flush_mode);
    }

    switch (status) {
      case Z_STREAM_ERROR:
      case Z_DATA_ERROR:
      case Z_NEED_DICT:
      case Z_MEM_ERROR:
        this.onEnd(status);
        this.ended = true;
        return false;
    }

    // Remember real `avail_out` value, because we may patch out buffer content
    // to align utf8 strings boundaries.
    last_avail_out = strm.avail_out;

    if (strm.next_out) {
      if (strm.avail_out === 0 || status === Z_STREAM_END) {

        if (this.options.to === 'string') {

          let next_out_utf8 = strings.utf8border(strm.output, strm.next_out);

          let tail = strm.next_out - next_out_utf8;
          let utf8str = strings.buf2string(strm.output, next_out_utf8);

          // move tail & realign counters
          strm.next_out = tail;
          strm.avail_out = chunkSize - tail;
          if (tail) strm.output.set(strm.output.subarray(next_out_utf8, next_out_utf8 + tail), 0);

          this.onData(utf8str);

        } else {
          this.onData(strm.output.length === strm.next_out ? strm.output : strm.output.subarray(0, strm.next_out));
        }
      }
    }

    // Must repeat iteration if out buffer is full
    if (status === Z_OK && last_avail_out === 0) continue;

    // Finalize if end of stream reached.
    if (status === Z_STREAM_END) {
      status = zlib_inflate.inflateEnd(this.strm);
      this.onEnd(status);
      this.ended = true;
      return true;
    }

    if (strm.avail_in === 0) break;
  }

  return true;
};


/**
 * Inflate#onData(chunk) -> Void
 * - chunk (Uint8Array|String): output data. When string output requested,
 *   each chunk will be string.
 *
 * By default, stores data blocks in `chunks[]` property and glue
 * those in `onEnd`. Override this handler, if you need another behaviour.
 **/
Inflate.prototype.onData = function (chunk) {
  this.chunks.push(chunk);
};


/**
 * Inflate#onEnd(status) -> Void
 * - status (Number): inflate status. 0 (Z_OK) on success,
 *   other if not.
 *
 * Called either after you tell inflate that the input stream is
 * complete (Z_FINISH). By default - join collected chunks,
 * free memory and fill `results` / `err` properties.
 **/
Inflate.prototype.onEnd = function (status) {
  // On success - join
  if (status === Z_OK) {
    if (this.options.to === 'string') {
      this.result = this.chunks.join('');
    } else {
      this.result = utils.flattenChunks(this.chunks);
    }
  }
  this.chunks = [];
  this.err = status;
  this.msg = this.strm.msg;
};


/**
 * inflate(data[, options]) -> Uint8Array|String
 * - data (Uint8Array|ArrayBuffer): input data to decompress.
 * - options (Object): zlib inflate options.
 *
 * Decompress `data` with inflate/ungzip and `options`. Autodetect
 * format via wrapper header by default. That's why we don't provide
 * separate `ungzip` method.
 *
 * Supported options are:
 *
 * - windowBits
 *
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 * for more information.
 *
 * Sugar (options):
 *
 * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
 *   negative windowBits implicitly.
 * - `to` (String) - if equal to 'string', then result will be converted
 *   from utf8 to utf16 (javascript) string. When string output requested,
 *   chunk length can differ from `chunkSize`, depending on content.
 *
 *
 * ##### Example:
 *
 * ```javascript
 * const pako = require('pako');
 * const input = pako.deflate(new Uint8Array([1,2,3,4,5,6,7,8,9]));
 * let output;
 *
 * try {
 *   output = pako.inflate(input);
 * } catch (err) {
 *   console.log(err);
 * }
 * ```
 **/
function inflate(input, options) {
  const inflator = new Inflate(options);

  inflator.push(input);

  // That will never happens, if you don't cheat with options :)
  if (inflator.err) throw inflator.msg || msg[inflator.err];

  return inflator.result;
}


/**
 * inflateRaw(data[, options]) -> Uint8Array|String
 * - data (Uint8Array|ArrayBuffer): input data to decompress.
 * - options (Object): zlib inflate options.
 *
 * The same as [[inflate]], but creates raw data, without wrapper
 * (header and adler32 crc).
 **/
function inflateRaw(input, options) {
  options = options || {};
  options.raw = true;
  return inflate(input, options);
}


/**
 * ungzip(data[, options]) -> Uint8Array|String
 * - data (Uint8Array|ArrayBuffer): input data to decompress.
 * - options (Object): zlib inflate options.
 *
 * Just shortcut to [[inflate]], because it autodetects format
 * by header.content. Done for convenience.
 **/


module.exports.Inflate = Inflate;
module.exports.inflate = inflate;
module.exports.inflateRaw = inflateRaw;
module.exports.ungzip = inflate;
module.exports.constants = require('./zlib/constants');

},{"./utils/common":9,"./utils/strings":10,"./zlib/constants":12,"./zlib/gzheader":15,"./zlib/inflate":17,"./zlib/messages":19,"./zlib/zstream":21}],9:[function(require,module,exports){
'use strict';


const _has = (obj, key) => {
  return Object.prototype.hasOwnProperty.call(obj, key);
};

module.exports.assign = function (obj /*from1, from2, from3, ...*/) {
  const sources = Array.prototype.slice.call(arguments, 1);
  while (sources.length) {
    const source = sources.shift();
    if (!source) { continue; }

    if (typeof source !== 'object') {
      throw new TypeError(source + 'must be non-object');
    }

    for (const p in source) {
      if (_has(source, p)) {
        obj[p] = source[p];
      }
    }
  }

  return obj;
};


// Join array of chunks to single array.
module.exports.flattenChunks = (chunks) => {
  // calculate data length
  let len = 0;

  for (let i = 0, l = chunks.length; i < l; i++) {
    len += chunks[i].length;
  }

  // join chunks
  const result = new Uint8Array(len);

  for (let i = 0, pos = 0, l = chunks.length; i < l; i++) {
    let chunk = chunks[i];
    result.set(chunk, pos);
    pos += chunk.length;
  }

  return result;
};

},{}],10:[function(require,module,exports){
// String encode/decode helpers
'use strict';


// Quick check if we can use fast array to bin string conversion
//
// - apply(Array) can fail on Android 2.2
// - apply(Uint8Array) can fail on iOS 5.1 Safari
//
let STR_APPLY_UIA_OK = true;

try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; }


// Table with utf8 lengths (calculated by first byte of sequence)
// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS,
// because max possible codepoint is 0x10ffff
const _utf8len = new Uint8Array(256);
for (let q = 0; q < 256; q++) {
  _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1);
}
_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start


// convert string to array (typed, when possible)
module.exports.string2buf = (str) => {
  if (typeof TextEncoder === 'function' && TextEncoder.prototype.encode) {
    return new TextEncoder().encode(str);
  }

  let buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0;

  // count binary size
  for (m_pos = 0; m_pos < str_len; m_pos++) {
    c = str.charCodeAt(m_pos);
    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
      c2 = str.charCodeAt(m_pos + 1);
      if ((c2 & 0xfc00) === 0xdc00) {
        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
        m_pos++;
      }
    }
    buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4;
  }

  // allocate buffer
  buf = new Uint8Array(buf_len);

  // convert
  for (i = 0, m_pos = 0; i < buf_len; m_pos++) {
    c = str.charCodeAt(m_pos);
    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
      c2 = str.charCodeAt(m_pos + 1);
      if ((c2 & 0xfc00) === 0xdc00) {
        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
        m_pos++;
      }
    }
    if (c < 0x80) {
      /* one byte */
      buf[i++] = c;
    } else if (c < 0x800) {
      /* two bytes */
      buf[i++] = 0xC0 | (c >>> 6);
      buf[i++] = 0x80 | (c & 0x3f);
    } else if (c < 0x10000) {
      /* three bytes */
      buf[i++] = 0xE0 | (c >>> 12);
      buf[i++] = 0x80 | (c >>> 6 & 0x3f);
      buf[i++] = 0x80 | (c & 0x3f);
    } else {
      /* four bytes */
      buf[i++] = 0xf0 | (c >>> 18);
      buf[i++] = 0x80 | (c >>> 12 & 0x3f);
      buf[i++] = 0x80 | (c >>> 6 & 0x3f);
      buf[i++] = 0x80 | (c & 0x3f);
    }
  }

  return buf;
};

// Helper
const buf2binstring = (buf, len) => {
  // On Chrome, the arguments in a function call that are allowed is `65534`.
  // If the length of the buffer is smaller than that, we can use this optimization,
  // otherwise we will take a slower path.
  if (len < 65534) {
    if (buf.subarray && STR_APPLY_UIA_OK) {
      return String.fromCharCode.apply(null, buf.length === len ? buf : buf.subarray(0, len));
    }
  }

  let result = '';
  for (let i = 0; i < len; i++) {
    result += String.fromCharCode(buf[i]);
  }
  return result;
};


// convert array to string
module.exports.buf2string = (buf, max) => {
  const len = max || buf.length;

  if (typeof TextDecoder === 'function' && TextDecoder.prototype.decode) {
    return new TextDecoder().decode(buf.subarray(0, max));
  }

  let i, out;

  // Reserve max possible length (2 words per char)
  // NB: by unknown reasons, Array is significantly faster for
  //     String.fromCharCode.apply than Uint16Array.
  const utf16buf = new Array(len * 2);

  for (out = 0, i = 0; i < len;) {
    let c = buf[i++];
    // quick process ascii
    if (c < 0x80) { utf16buf[out++] = c; continue; }

    let c_len = _utf8len[c];
    // skip 5 & 6 byte codes
    if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; }

    // apply mask on first byte
    c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07;
    // join the rest
    while (c_len > 1 && i < len) {
      c = (c << 6) | (buf[i++] & 0x3f);
      c_len--;
    }

    // terminated by end of string?
    if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; }

    if (c < 0x10000) {
      utf16buf[out++] = c;
    } else {
      c -= 0x10000;
      utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff);
      utf16buf[out++] = 0xdc00 | (c & 0x3ff);
    }
  }

  return buf2binstring(utf16buf, out);
};


// Calculate max possible position in utf8 buffer,
// that will not break sequence. If that's not possible
// - (very small limits) return max size as is.
//
// buf[] - utf8 bytes array
// max   - length limit (mandatory);
module.exports.utf8border = (buf, max) => {

  max = max || buf.length;
  if (max > buf.length) { max = buf.length; }

  // go back from last position, until start of sequence found
  let pos = max - 1;
  while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; }

  // Very small and broken sequence,
  // return max, because we should return something anyway.
  if (pos < 0) { return max; }

  // If we came to start of buffer - that means buffer is too small,
  // return max too.
  if (pos === 0) { return max; }

  return (pos + _utf8len[buf[pos]] > max) ? pos : max;
};

},{}],11:[function(require,module,exports){
'use strict';

// Note: adler32 takes 12% for level 0 and 2% for level 6.
// It isn't worth it to make additional optimizations as in original.
// Small size is preferable.

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

const adler32 = (adler, buf, len, pos) => {
  let s1 = (adler & 0xffff) |0,
      s2 = ((adler >>> 16) & 0xffff) |0,
      n = 0;

  while (len !== 0) {
    // Set limit ~ twice less than 5552, to keep
    // s2 in 31-bits, because we force signed ints.
    // in other case %= will fail.
    n = len > 2000 ? 2000 : len;
    len -= n;

    do {
      s1 = (s1 + buf[pos++]) |0;
      s2 = (s2 + s1) |0;
    } while (--n);

    s1 %= 65521;
    s2 %= 65521;
  }

  return (s1 | (s2 << 16)) |0;
};


module.exports = adler32;

},{}],12:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

module.exports = {

  /* Allowed flush values; see deflate() and inflate() below for details */
  Z_NO_FLUSH:         0,
  Z_PARTIAL_FLUSH:    1,
  Z_SYNC_FLUSH:       2,
  Z_FULL_FLUSH:       3,
  Z_FINISH:           4,
  Z_BLOCK:            5,
  Z_TREES:            6,

  /* Return codes for the compression/decompression functions. Negative values
  * are errors, positive values are used for special but normal events.
  */
  Z_OK:               0,
  Z_STREAM_END:       1,
  Z_NEED_DICT:        2,
  Z_ERRNO:           -1,
  Z_STREAM_ERROR:    -2,
  Z_DATA_ERROR:      -3,
  Z_MEM_ERROR:       -4,
  Z_BUF_ERROR:       -5,
  //Z_VERSION_ERROR: -6,

  /* compression levels */
  Z_NO_COMPRESSION:         0,
  Z_BEST_SPEED:             1,
  Z_BEST_COMPRESSION:       9,
  Z_DEFAULT_COMPRESSION:   -1,


  Z_FILTERED:               1,
  Z_HUFFMAN_ONLY:           2,
  Z_RLE:                    3,
  Z_FIXED:                  4,
  Z_DEFAULT_STRATEGY:       0,

  /* Possible values of the data_type field (though see inflate()) */
  Z_BINARY:                 0,
  Z_TEXT:                   1,
  //Z_ASCII:                1, // = Z_TEXT (deprecated)
  Z_UNKNOWN:                2,

  /* The deflate compression method */
  Z_DEFLATED:               8
  //Z_NULL:                 null // Use -1 or null inline, depending on var type
};

},{}],13:[function(require,module,exports){
'use strict';

// Note: we can't get significant speed boost here.
// So write code to minimize size - no pregenerated tables
// and array tools dependencies.

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

// Use ordinary array, since untyped makes no boost here
const makeTable = () => {
  let c, table = [];

  for (var n = 0; n < 256; n++) {
    c = n;
    for (var k = 0; k < 8; k++) {
      c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1));
    }
    table[n] = c;
  }

  return table;
};

// Create table on load. Just 255 signed longs. Not a problem.
const crcTable = new Uint32Array(makeTable());


const crc32 = (crc, buf, len, pos) => {
  const t = crcTable;
  const end = pos + len;

  crc ^= -1;

  for (let i = pos; i < end; i++) {
    crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF];
  }

  return (crc ^ (-1)); // >>> 0;
};


module.exports = crc32;

},{}],14:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

const { _tr_init, _tr_stored_block, _tr_flush_block, _tr_tally, _tr_align } = require('./trees');
const adler32 = require('./adler32');
const crc32   = require('./crc32');
const msg     = require('./messages');

/* Public constants ==========================================================*/
/* ===========================================================================*/

const {
  Z_NO_FLUSH, Z_PARTIAL_FLUSH, Z_FULL_FLUSH, Z_FINISH, Z_BLOCK,
  Z_OK, Z_STREAM_END, Z_STREAM_ERROR, Z_DATA_ERROR, Z_BUF_ERROR,
  Z_DEFAULT_COMPRESSION,
  Z_FILTERED, Z_HUFFMAN_ONLY, Z_RLE, Z_FIXED, Z_DEFAULT_STRATEGY,
  Z_UNKNOWN,
  Z_DEFLATED
} = require('./constants');

/*============================================================================*/


const MAX_MEM_LEVEL = 9;
/* Maximum value for memLevel in deflateInit2 */
const MAX_WBITS = 15;
/* 32K LZ77 window */
const DEF_MEM_LEVEL = 8;


const LENGTH_CODES  = 29;
/* number of length codes, not counting the special END_BLOCK code */
const LITERALS      = 256;
/* number of literal bytes 0..255 */
const L_CODES       = LITERALS + 1 + LENGTH_CODES;
/* number of Literal or Length codes, including the END_BLOCK code */
const D_CODES       = 30;
/* number of distance codes */
const BL_CODES      = 19;
/* number of codes used to transfer the bit lengths */
const HEAP_SIZE     = 2 * L_CODES + 1;
/* maximum heap size */
const MAX_BITS  = 15;
/* All codes must not exceed MAX_BITS bits */

const MIN_MATCH = 3;
const MAX_MATCH = 258;
const MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);

const PRESET_DICT = 0x20;

const INIT_STATE    =  42;    /* zlib header -> BUSY_STATE */
//#ifdef GZIP
const GZIP_STATE    =  57;    /* gzip header -> BUSY_STATE | EXTRA_STATE */
//#endif
const EXTRA_STATE   =  69;    /* gzip extra block -> NAME_STATE */
const NAME_STATE    =  73;    /* gzip file name -> COMMENT_STATE */
const COMMENT_STATE =  91;    /* gzip comment -> HCRC_STATE */
const HCRC_STATE    = 103;    /* gzip header CRC -> BUSY_STATE */
const BUSY_STATE    = 113;    /* deflate -> FINISH_STATE */
const FINISH_STATE  = 666;    /* stream complete */

const BS_NEED_MORE      = 1; /* block not completed, need more input or more output */
const BS_BLOCK_DONE     = 2; /* block flush performed */
const BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */
const BS_FINISH_DONE    = 4; /* finish done, accept no more input or output */

const OS_CODE = 0x03; // Unix :) . Don't detect, use this default.

const err = (strm, errorCode) => {
  strm.msg = msg[errorCode];
  return errorCode;
};

const rank = (f) => {
  return ((f) * 2) - ((f) > 4 ? 9 : 0);
};

const zero = (buf) => {
  let len = buf.length; while (--len >= 0) { buf[len] = 0; }
};

/* ===========================================================================
 * Slide the hash table when sliding the window down (could be avoided with 32
 * bit values at the expense of memory usage). We slide even when level == 0 to
 * keep the hash table consistent if we switch back to level > 0 later.
 */
const slide_hash = (s) => {
  let n, m;
  let p;
  let wsize = s.w_size;

  n = s.hash_size;
  p = n;
  do {
    m = s.head[--p];
    s.head[p] = (m >= wsize ? m - wsize : 0);
  } while (--n);
  n = wsize;
//#ifndef FASTEST
  p = n;
  do {
    m = s.prev[--p];
    s.prev[p] = (m >= wsize ? m - wsize : 0);
    /* If n is not on any hash chain, prev[n] is garbage but
     * its value will never be used.
     */
  } while (--n);
//#endif
};

/* eslint-disable new-cap */
let HASH_ZLIB = (s, prev, data) => ((prev << s.hash_shift) ^ data) & s.hash_mask;
// This hash causes less collisions, https://github.com/nodeca/pako/issues/135
// But breaks binary compatibility
//let HASH_FAST = (s, prev, data) => ((prev << 8) + (prev >> 8) + (data << 4)) & s.hash_mask;
let HASH = HASH_ZLIB;


/* =========================================================================
 * Flush as much pending output as possible. All deflate() output, except for
 * some deflate_stored() output, goes through this function so some
 * applications may wish to modify it to avoid allocating a large
 * strm->next_out buffer and copying into it. (See also read_buf()).
 */
const flush_pending = (strm) => {
  const s = strm.state;

  //_tr_flush_bits(s);
  let len = s.pending;
  if (len > strm.avail_out) {
    len = strm.avail_out;
  }
  if (len === 0) { return; }

  strm.output.set(s.pending_buf.subarray(s.pending_out, s.pending_out + len), strm.next_out);
  strm.next_out  += len;
  s.pending_out  += len;
  strm.total_out += len;
  strm.avail_out -= len;
  s.pending      -= len;
  if (s.pending === 0) {
    s.pending_out = 0;
  }
};


const flush_block_only = (s, last) => {
  _tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last);
  s.block_start = s.strstart;
  flush_pending(s.strm);
};


const put_byte = (s, b) => {
  s.pending_buf[s.pending++] = b;
};


/* =========================================================================
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 * IN assertion: the stream state is correct and there is enough room in
 * pending_buf.
 */
const putShortMSB = (s, b) => {

  //  put_byte(s, (Byte)(b >> 8));
//  put_byte(s, (Byte)(b & 0xff));
  s.pending_buf[s.pending++] = (b >>> 8) & 0xff;
  s.pending_buf[s.pending++] = b & 0xff;
};


/* ===========================================================================
 * Read a new buffer from the current input stream, update the adler32
 * and total number of bytes read.  All deflate() input goes through
 * this function so some applications may wish to modify it to avoid
 * allocating a large strm->input buffer and copying from it.
 * (See also flush_pending()).
 */
const read_buf = (strm, buf, start, size) => {

  let len = strm.avail_in;

  if (len > size) { len = size; }
  if (len === 0) { return 0; }

  strm.avail_in -= len;

  // zmemcpy(buf, strm->next_in, len);
  buf.set(strm.input.subarray(strm.next_in, strm.next_in + len), start);
  if (strm.state.wrap === 1) {
    strm.adler = adler32(strm.adler, buf, len, start);
  }

  else if (strm.state.wrap === 2) {
    strm.adler = crc32(strm.adler, buf, len, start);
  }

  strm.next_in += len;
  strm.total_in += len;

  return len;
};


/* ===========================================================================
 * Set match_start to the longest match starting at the given string and
 * return its length. Matches shorter or equal to prev_length are discarded,
 * in which case the result is equal to prev_length and match_start is
 * garbage.
 * IN assertions: cur_match is the head of the hash chain for the current
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 * OUT assertion: the match length is not greater than s->lookahead.
 */
const longest_match = (s, cur_match) => {

  let chain_length = s.max_chain_length;      /* max hash chain length */
  let scan = s.strstart; /* current string */
  let match;                       /* matched string */
  let len;                           /* length of current match */
  let best_len = s.prev_length;              /* best match length so far */
  let nice_match = s.nice_match;             /* stop if match long enough */
  const limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ?
      s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/;

  const _win = s.window; // shortcut

  const wmask = s.w_mask;
  const prev  = s.prev;

  /* Stop when cur_match becomes <= limit. To simplify the code,
   * we prevent matches with the string of window index 0.
   */

  const strend = s.strstart + MAX_MATCH;
  let scan_end1  = _win[scan + best_len - 1];
  let scan_end   = _win[scan + best_len];

  /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   * It is easy to get rid of this optimization if necessary.
   */
  // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

  /* Do not waste too much time if we already have a good match: */
  if (s.prev_length >= s.good_match) {
    chain_length >>= 2;
  }
  /* Do not look for matches beyond the end of the input. This is necessary
   * to make deflate deterministic.
   */
  if (nice_match > s.lookahead) { nice_match = s.lookahead; }

  // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");

  do {
    // Assert(cur_match < s->strstart, "no future");
    match = cur_match;

    /* Skip to next match if the match length cannot increase
     * or if the match length is less than 2.  Note that the checks below
     * for insufficient lookahead only occur occasionally for performance
     * reasons.  Therefore uninitialized memory will be accessed, and
     * conditional jumps will be made that depend on those values.
     * However the length of the match is limited to the lookahead, so
     * the output of deflate is not affected by the uninitialized values.
     */

    if (_win[match + best_len]     !== scan_end  ||
        _win[match + best_len - 1] !== scan_end1 ||
        _win[match]                !== _win[scan] ||
        _win[++match]              !== _win[scan + 1]) {
      continue;
    }

    /* The check at best_len-1 can be removed because it will be made
     * again later. (This heuristic is not always a win.)
     * It is not necessary to compare scan[2] and match[2] since they
     * are always equal when the other bytes match, given that
     * the hash keys are equal and that HASH_BITS >= 8.
     */
    scan += 2;
    match++;
    // Assert(*scan == *match, "match[2]?");

    /* We check for insufficient lookahead only every 8th comparison;
     * the 256th check will be made at strstart+258.
     */
    do {
      /*jshint noempty:false*/
    } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
             scan < strend);

    // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");

    len = MAX_MATCH - (strend - scan);
    scan = strend - MAX_MATCH;

    if (len > best_len) {
      s.match_start = cur_match;
      best_len = len;
      if (len >= nice_match) {
        break;
      }
      scan_end1  = _win[scan + best_len - 1];
      scan_end   = _win[scan + best_len];
    }
  } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0);

  if (best_len <= s.lookahead) {
    return best_len;
  }
  return s.lookahead;
};


/* ===========================================================================
 * Fill the window when the lookahead becomes insufficient.
 * Updates strstart and lookahead.
 *
 * IN assertion: lookahead < MIN_LOOKAHEAD
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 *    At least one byte has been read, or avail_in == 0; reads are
 *    performed for at least two bytes (required for the zip translate_eol
 *    option -- not supported here).
 */
const fill_window = (s) => {

  const _w_size = s.w_size;
  let n, more, str;

  //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");

  do {
    more = s.window_size - s.lookahead - s.strstart;

    // JS ints have 32 bit, block below not needed
    /* Deal with !@#$% 64K limit: */
    //if (sizeof(int) <= 2) {
    //    if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
    //        more = wsize;
    //
    //  } else if (more == (unsigned)(-1)) {
    //        /* Very unlikely, but possible on 16 bit machine if
    //         * strstart == 0 && lookahead == 1 (input done a byte at time)
    //         */
    //        more--;
    //    }
    //}


    /* If the window is almost full and there is insufficient lookahead,
     * move the upper half to the lower one to make room in the upper half.
     */
    if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) {

      s.window.set(s.window.subarray(_w_size, _w_size + _w_size - more), 0);
      s.match_start -= _w_size;
      s.strstart -= _w_size;
      /* we now have strstart >= MAX_DIST */
      s.block_start -= _w_size;
      if (s.insert > s.strstart) {
        s.insert = s.strstart;
      }
      slide_hash(s);
      more += _w_size;
    }
    if (s.strm.avail_in === 0) {
      break;
    }

    /* If there was no sliding:
     *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
     *    more == window_size - lookahead - strstart
     * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
     * => more >= window_size - 2*WSIZE + 2
     * In the BIG_MEM or MMAP case (not yet supported),
     *   window_size == input_size + MIN_LOOKAHEAD  &&
     *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
     * Otherwise, window_size == 2*WSIZE so more >= 2.
     * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
     */
    //Assert(more >= 2, "more < 2");
    n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more);
    s.lookahead += n;

    /* Initialize the hash value now that we have some input: */
    if (s.lookahead + s.insert >= MIN_MATCH) {
      str = s.strstart - s.insert;
      s.ins_h = s.window[str];

      /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */
      s.ins_h = HASH(s, s.ins_h, s.window[str + 1]);
//#if MIN_MATCH != 3
//        Call update_hash() MIN_MATCH-3 more times
//#endif
      while (s.insert) {
        /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
        s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]);

        s.prev[str & s.w_mask] = s.head[s.ins_h];
        s.head[s.ins_h] = str;
        str++;
        s.insert--;
        if (s.lookahead + s.insert < MIN_MATCH) {
          break;
        }
      }
    }
    /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
     * but this is not important since only literal bytes will be emitted.
     */

  } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0);

  /* If the WIN_INIT bytes after the end of the current data have never been
   * written, then zero those bytes in order to avoid memory check reports of
   * the use of uninitialized (or uninitialised as Julian writes) bytes by
   * the longest match routines.  Update the high water mark for the next
   * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
   * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
   */
//  if (s.high_water < s.window_size) {
//    const curr = s.strstart + s.lookahead;
//    let init = 0;
//
//    if (s.high_water < curr) {
//      /* Previous high water mark below current data -- zero WIN_INIT
//       * bytes or up to end of window, whichever is less.
//       */
//      init = s.window_size - curr;
//      if (init > WIN_INIT)
//        init = WIN_INIT;
//      zmemzero(s->window + curr, (unsigned)init);
//      s->high_water = curr + init;
//    }
//    else if (s->high_water < (ulg)curr + WIN_INIT) {
//      /* High water mark at or above current data, but below current data
//       * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
//       * to end of window, whichever is less.
//       */
//      init = (ulg)curr + WIN_INIT - s->high_water;
//      if (init > s->window_size - s->high_water)
//        init = s->window_size - s->high_water;
//      zmemzero(s->window + s->high_water, (unsigned)init);
//      s->high_water += init;
//    }
//  }
//
//  Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
//    "not enough room for search");
};

/* ===========================================================================
 * Copy without compression as much as possible from the input stream, return
 * the current block state.
 *
 * In case deflateParams() is used to later switch to a non-zero compression
 * level, s->matches (otherwise unused when storing) keeps track of the number
 * of hash table slides to perform. If s->matches is 1, then one hash table
 * slide will be done when switching. If s->matches is 2, the maximum value
 * allowed here, then the hash table will be cleared, since two or more slides
 * is the same as a clear.
 *
 * deflate_stored() is written to minimize the number of times an input byte is
 * copied. It is most efficient with large input and output buffers, which
 * maximizes the opportunites to have a single copy from next_in to next_out.
 */
const deflate_stored = (s, flush) => {

  /* Smallest worthy block size when not flushing or finishing. By default
   * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
   * large input and output buffers, the stored block size will be larger.
   */
  let min_block = s.pending_buf_size - 5 > s.w_size ? s.w_size : s.pending_buf_size - 5;

  /* Copy as many min_block or larger stored blocks directly to next_out as
   * possible. If flushing, copy the remaining available input to next_out as
   * stored blocks, if there is enough space.
   */
  let len, left, have, last = 0;
  let used = s.strm.avail_in;
  do {
    /* Set len to the maximum size block that we can copy directly with the
     * available input data and output space. Set left to how much of that
     * would be copied from what's left in the window.
     */
    len = 65535/* MAX_STORED */;     /* maximum deflate stored block length */
    have = (s.bi_valid + 42) >> 3;     /* number of header bytes */
    if (s.strm.avail_out < have) {         /* need room for header */
      break;
    }
      /* maximum stored block length that will fit in avail_out: */
    have = s.strm.avail_out - have;
    left = s.strstart - s.block_start;  /* bytes left in window */
    if (len > left + s.strm.avail_in) {
      len = left + s.strm.avail_in;   /* limit len to the input */
    }
    if (len > have) {
      len = have;             /* limit len to the output */
    }

    /* If the stored block would be less than min_block in length, or if
     * unable to copy all of the available input when flushing, then try
     * copying to the window and the pending buffer instead. Also don't
     * write an empty block when flushing -- deflate() does that.
     */
    if (len < min_block && ((len === 0 && flush !== Z_FINISH) ||
                        flush === Z_NO_FLUSH ||
                        len !== left + s.strm.avail_in)) {
      break;
    }

    /* Make a dummy stored block in pending to get the header bytes,
     * including any pending bits. This also updates the debugging counts.
     */
    last = flush === Z_FINISH && len === left + s.strm.avail_in ? 1 : 0;
    _tr_stored_block(s, 0, 0, last);

    /* Replace the lengths in the dummy stored block with len. */
    s.pending_buf[s.pending - 4] = len;
    s.pending_buf[s.pending - 3] = len >> 8;
    s.pending_buf[s.pending - 2] = ~len;
    s.pending_buf[s.pending - 1] = ~len >> 8;

    /* Write the stored block header bytes. */
    flush_pending(s.strm);

//#ifdef ZLIB_DEBUG
//    /* Update debugging counts for the data about to be copied. */
//    s->compressed_len += len << 3;
//    s->bits_sent += len << 3;
//#endif

    /* Copy uncompressed bytes from the window to next_out. */
    if (left) {
      if (left > len) {
        left = len;
      }
      //zmemcpy(s->strm->next_out, s->window + s->block_start, left);
      s.strm.output.set(s.window.subarray(s.block_start, s.block_start + left), s.strm.next_out);
      s.strm.next_out += left;
      s.strm.avail_out -= left;
      s.strm.total_out += left;
      s.block_start += left;
      len -= left;
    }

    /* Copy uncompressed bytes directly from next_in to next_out, updating
     * the check value.
     */
    if (len) {
      read_buf(s.strm, s.strm.output, s.strm.next_out, len);
      s.strm.next_out += len;
      s.strm.avail_out -= len;
      s.strm.total_out += len;
    }
  } while (last === 0);

  /* Update the sliding window with the last s->w_size bytes of the copied
   * data, or append all of the copied data to the existing window if less
   * than s->w_size bytes were copied. Also update the number of bytes to
   * insert in the hash tables, in the event that deflateParams() switches to
   * a non-zero compression level.
   */
  used -= s.strm.avail_in;    /* number of input bytes directly copied */
  if (used) {
    /* If any input was used, then no unused input remains in the window,
     * therefore s->block_start == s->strstart.
     */
    if (used >= s.w_size) {  /* supplant the previous history */
      s.matches = 2;     /* clear hash */
      //zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
      s.window.set(s.strm.input.subarray(s.strm.next_in - s.w_size, s.strm.next_in), 0);
      s.strstart = s.w_size;
      s.insert = s.strstart;
    }
    else {
      if (s.window_size - s.strstart <= used) {
        /* Slide the window down. */
        s.strstart -= s.w_size;
        //zmemcpy(s->window, s->window + s->w_size, s->strstart);
        s.window.set(s.window.subarray(s.w_size, s.w_size + s.strstart), 0);
        if (s.matches < 2) {
          s.matches++;   /* add a pending slide_hash() */
        }
        if (s.insert > s.strstart) {
          s.insert = s.strstart;
        }
      }
      //zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
      s.window.set(s.strm.input.subarray(s.strm.next_in - used, s.strm.next_in), s.strstart);
      s.strstart += used;
      s.insert += used > s.w_size - s.insert ? s.w_size - s.insert : used;
    }
    s.block_start = s.strstart;
  }
  if (s.high_water < s.strstart) {
    s.high_water = s.strstart;
  }

  /* If the last block was written to next_out, then done. */
  if (last) {
    return BS_FINISH_DONE;
  }

  /* If flushing and all input has been consumed, then done. */
  if (flush !== Z_NO_FLUSH && flush !== Z_FINISH &&
    s.strm.avail_in === 0 && s.strstart === s.block_start) {
    return BS_BLOCK_DONE;
  }

  /* Fill the window with any remaining input. */
  have = s.window_size - s.strstart;
  if (s.strm.avail_in > have && s.block_start >= s.w_size) {
    /* Slide the window down. */
    s.block_start -= s.w_size;
    s.strstart -= s.w_size;
    //zmemcpy(s->window, s->window + s->w_size, s->strstart);
    s.window.set(s.window.subarray(s.w_size, s.w_size + s.strstart), 0);
    if (s.matches < 2) {
      s.matches++;       /* add a pending slide_hash() */
    }
    have += s.w_size;      /* more space now */
    if (s.insert > s.strstart) {
      s.insert = s.strstart;
    }
  }
  if (have > s.strm.avail_in) {
    have = s.strm.avail_in;
  }
  if (have) {
    read_buf(s.strm, s.window, s.strstart, have);
    s.strstart += have;
    s.insert += have > s.w_size - s.insert ? s.w_size - s.insert : have;
  }
  if (s.high_water < s.strstart) {
    s.high_water = s.strstart;
  }

  /* There was not enough avail_out to write a complete worthy or flushed
   * stored block to next_out. Write a stored block to pending instead, if we
   * have enough input for a worthy block, or if flushing and there is enough
   * room for the remaining input as a stored block in the pending buffer.
   */
  have = (s.bi_valid + 42) >> 3;     /* number of header bytes */
    /* maximum stored block length that will fit in pending: */
  have = s.pending_buf_size - have > 65535/* MAX_STORED */ ? 65535/* MAX_STORED */ : s.pending_buf_size - have;
  min_block = have > s.w_size ? s.w_size : have;
  left = s.strstart - s.block_start;
  if (left >= min_block ||
     ((left || flush === Z_FINISH) && flush !== Z_NO_FLUSH &&
     s.strm.avail_in === 0 && left <= have)) {
    len = left > have ? have : left;
    last = flush === Z_FINISH && s.strm.avail_in === 0 &&
         len === left ? 1 : 0;
    _tr_stored_block(s, s.block_start, len, last);
    s.block_start += len;
    flush_pending(s.strm);
  }

  /* We've done all we can with the available input and output. */
  return last ? BS_FINISH_STARTED : BS_NEED_MORE;
};


/* ===========================================================================
 * Compress as much as possible from the input stream, return the current
 * block state.
 * This function does not perform lazy evaluation of matches and inserts
 * new strings in the dictionary only for unmatched strings or for short
 * matches. It is used only for the fast compression options.
 */
const deflate_fast = (s, flush) => {

  let hash_head;        /* head of the hash chain */
  let bflush;           /* set if current block must be flushed */

  for (;;) {
    /* Make sure that we always have enough lookahead, except
     * at the end of the input file. We need MAX_MATCH bytes
     * for the next match, plus MIN_MATCH bytes to insert the
     * string following the next match.
     */
    if (s.lookahead < MIN_LOOKAHEAD) {
      fill_window(s);
      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
        return BS_NEED_MORE;
      }
      if (s.lookahead === 0) {
        break; /* flush the current block */
      }
    }

    /* Insert the string window[strstart .. strstart+2] in the
     * dictionary, and set hash_head to the head of the hash chain:
     */
    hash_head = 0/*NIL*/;
    if (s.lookahead >= MIN_MATCH) {
      /*** INSERT_STRING(s, s.strstart, hash_head); ***/
      s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
      s.head[s.ins_h] = s.strstart;
      /***/
    }

    /* Find the longest match, discarding those <= prev_length.
     * At this point we have always match_length < MIN_MATCH
     */
    if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) {
      /* To simplify the code, we prevent matches with the string
       * of window index 0 (in particular we have to avoid a match
       * of the string with itself at the start of the input file).
       */
      s.match_length = longest_match(s, hash_head);
      /* longest_match() sets match_start */
    }
    if (s.match_length >= MIN_MATCH) {
      // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only

      /*** _tr_tally_dist(s, s.strstart - s.match_start,
                     s.match_length - MIN_MATCH, bflush); ***/
      bflush = _tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH);

      s.lookahead -= s.match_length;

      /* Insert new strings in the hash table only if the match length
       * is not too large. This saves time but degrades compression.
       */
      if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) {
        s.match_length--; /* string at strstart already in table */
        do {
          s.strstart++;
          /*** INSERT_STRING(s, s.strstart, hash_head); ***/
          s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
          s.head[s.ins_h] = s.strstart;
          /***/
          /* strstart never exceeds WSIZE-MAX_MATCH, so there are
           * always MIN_MATCH bytes ahead.
           */
        } while (--s.match_length !== 0);
        s.strstart++;
      } else
      {
        s.strstart += s.match_length;
        s.match_length = 0;
        s.ins_h = s.window[s.strstart];
        /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */
        s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + 1]);

//#if MIN_MATCH != 3
//                Call UPDATE_HASH() MIN_MATCH-3 more times
//#endif
        /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
         * matter since it will be recomputed at next deflate call.
         */
      }
    } else {
      /* No match, output a literal byte */
      //Tracevv((stderr,"%c", s.window[s.strstart]));
      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
      bflush = _tr_tally(s, 0, s.window[s.strstart]);

      s.lookahead--;
      s.strstart++;
    }
    if (bflush) {
      /*** FLUSH_BLOCK(s, 0); ***/
      flush_block_only(s, false);
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
      /***/
    }
  }
  s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1);
  if (flush === Z_FINISH) {
    /*** FLUSH_BLOCK(s, 1); ***/
    flush_block_only(s, true);
    if (s.strm.avail_out === 0) {
      return BS_FINISH_STARTED;
    }
    /***/
    return BS_FINISH_DONE;
  }
  if (s.sym_next) {
    /*** FLUSH_BLOCK(s, 0); ***/
    flush_block_only(s, false);
    if (s.strm.avail_out === 0) {
      return BS_NEED_MORE;
    }
    /***/
  }
  return BS_BLOCK_DONE;
};

/* ===========================================================================
 * Same as above, but achieves better compression. We use a lazy
 * evaluation for matches: a match is finally adopted only if there is
 * no better match at the next window position.
 */
const deflate_slow = (s, flush) => {

  let hash_head;          /* head of hash chain */
  let bflush;              /* set if current block must be flushed */

  let max_insert;

  /* Process the input block. */
  for (;;) {
    /* Make sure that we always have enough lookahead, except
     * at the end of the input file. We need MAX_MATCH bytes
     * for the next match, plus MIN_MATCH bytes to insert the
     * string following the next match.
     */
    if (s.lookahead < MIN_LOOKAHEAD) {
      fill_window(s);
      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
        return BS_NEED_MORE;
      }
      if (s.lookahead === 0) { break; } /* flush the current block */
    }

    /* Insert the string window[strstart .. strstart+2] in the
     * dictionary, and set hash_head to the head of the hash chain:
     */
    hash_head = 0/*NIL*/;
    if (s.lookahead >= MIN_MATCH) {
      /*** INSERT_STRING(s, s.strstart, hash_head); ***/
      s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
      s.head[s.ins_h] = s.strstart;
      /***/
    }

    /* Find the longest match, discarding those <= prev_length.
     */
    s.prev_length = s.match_length;
    s.prev_match = s.match_start;
    s.match_length = MIN_MATCH - 1;

    if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match &&
        s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) {
      /* To simplify the code, we prevent matches with the string
       * of window index 0 (in particular we have to avoid a match
       * of the string with itself at the start of the input file).
       */
      s.match_length = longest_match(s, hash_head);
      /* longest_match() sets match_start */

      if (s.match_length <= 5 &&
         (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) {

        /* If prev_match is also MIN_MATCH, match_start is garbage
         * but we will ignore the current match anyway.
         */
        s.match_length = MIN_MATCH - 1;
      }
    }
    /* If there was a match at the previous step and the current
     * match is not better, output the previous match:
     */
    if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) {
      max_insert = s.strstart + s.lookahead - MIN_MATCH;
      /* Do not insert strings in hash table beyond this. */

      //check_match(s, s.strstart-1, s.prev_match, s.prev_length);

      /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match,
                     s.prev_length - MIN_MATCH, bflush);***/
      bflush = _tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH);
      /* Insert in hash table all strings up to the end of the match.
       * strstart-1 and strstart are already inserted. If there is not
       * enough lookahead, the last two strings are not inserted in
       * the hash table.
       */
      s.lookahead -= s.prev_length - 1;
      s.prev_length -= 2;
      do {
        if (++s.strstart <= max_insert) {
          /*** INSERT_STRING(s, s.strstart, hash_head); ***/
          s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
          s.head[s.ins_h] = s.strstart;
          /***/
        }
      } while (--s.prev_length !== 0);
      s.match_available = 0;
      s.match_length = MIN_MATCH - 1;
      s.strstart++;

      if (bflush) {
        /*** FLUSH_BLOCK(s, 0); ***/
        flush_block_only(s, false);
        if (s.strm.avail_out === 0) {
          return BS_NEED_MORE;
        }
        /***/
      }

    } else if (s.match_available) {
      /* If there was no match at the previous position, output a
       * single literal. If there was a match but the current match
       * is longer, truncate the previous match to a single literal.
       */
      //Tracevv((stderr,"%c", s->window[s->strstart-1]));
      /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
      bflush = _tr_tally(s, 0, s.window[s.strstart - 1]);

      if (bflush) {
        /*** FLUSH_BLOCK_ONLY(s, 0) ***/
        flush_block_only(s, false);
        /***/
      }
      s.strstart++;
      s.lookahead--;
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
    } else {
      /* There is no previous match to compare with, wait for
       * the next step to decide.
       */
      s.match_available = 1;
      s.strstart++;
      s.lookahead--;
    }
  }
  //Assert (flush != Z_NO_FLUSH, "no flush?");
  if (s.match_available) {
    //Tracevv((stderr,"%c", s->window[s->strstart-1]));
    /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
    bflush = _tr_tally(s, 0, s.window[s.strstart - 1]);

    s.match_available = 0;
  }
  s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1;
  if (flush === Z_FINISH) {
    /*** FLUSH_BLOCK(s, 1); ***/
    flush_block_only(s, true);
    if (s.strm.avail_out === 0) {
      return BS_FINISH_STARTED;
    }
    /***/
    return BS_FINISH_DONE;
  }
  if (s.sym_next) {
    /*** FLUSH_BLOCK(s, 0); ***/
    flush_block_only(s, false);
    if (s.strm.avail_out === 0) {
      return BS_NEED_MORE;
    }
    /***/
  }

  return BS_BLOCK_DONE;
};


/* ===========================================================================
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 * deflate switches away from Z_RLE.)
 */
const deflate_rle = (s, flush) => {

  let bflush;            /* set if current block must be flushed */
  let prev;              /* byte at distance one to match */
  let scan, strend;      /* scan goes up to strend for length of run */

  const _win = s.window;

  for (;;) {
    /* Make sure that we always have enough lookahead, except
     * at the end of the input file. We need MAX_MATCH bytes
     * for the longest run, plus one for the unrolled loop.
     */
    if (s.lookahead <= MAX_MATCH) {
      fill_window(s);
      if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) {
        return BS_NEED_MORE;
      }
      if (s.lookahead === 0) { break; } /* flush the current block */
    }

    /* See how many times the previous byte repeats */
    s.match_length = 0;
    if (s.lookahead >= MIN_MATCH && s.strstart > 0) {
      scan = s.strstart - 1;
      prev = _win[scan];
      if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) {
        strend = s.strstart + MAX_MATCH;
        do {
          /*jshint noempty:false*/
        } while (prev === _win[++scan] && prev === _win[++scan] &&
                 prev === _win[++scan] && prev === _win[++scan] &&
                 prev === _win[++scan] && prev === _win[++scan] &&
                 prev === _win[++scan] && prev === _win[++scan] &&
                 scan < strend);
        s.match_length = MAX_MATCH - (strend - scan);
        if (s.match_length > s.lookahead) {
          s.match_length = s.lookahead;
        }
      }
      //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
    }

    /* Emit match if have run of MIN_MATCH or longer, else emit literal */
    if (s.match_length >= MIN_MATCH) {
      //check_match(s, s.strstart, s.strstart - 1, s.match_length);

      /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/
      bflush = _tr_tally(s, 1, s.match_length - MIN_MATCH);

      s.lookahead -= s.match_length;
      s.strstart += s.match_length;
      s.match_length = 0;
    } else {
      /* No match, output a literal byte */
      //Tracevv((stderr,"%c", s->window[s->strstart]));
      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
      bflush = _tr_tally(s, 0, s.window[s.strstart]);

      s.lookahead--;
      s.strstart++;
    }
    if (bflush) {
      /*** FLUSH_BLOCK(s, 0); ***/
      flush_block_only(s, false);
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
      /***/
    }
  }
  s.insert = 0;
  if (flush === Z_FINISH) {
    /*** FLUSH_BLOCK(s, 1); ***/
    flush_block_only(s, true);
    if (s.strm.avail_out === 0) {
      return BS_FINISH_STARTED;
    }
    /***/
    return BS_FINISH_DONE;
  }
  if (s.sym_next) {
    /*** FLUSH_BLOCK(s, 0); ***/
    flush_block_only(s, false);
    if (s.strm.avail_out === 0) {
      return BS_NEED_MORE;
    }
    /***/
  }
  return BS_BLOCK_DONE;
};

/* ===========================================================================
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 * (It will be regenerated if this run of deflate switches away from Huffman.)
 */
const deflate_huff = (s, flush) => {

  let bflush;             /* set if current block must be flushed */

  for (;;) {
    /* Make sure that we have a literal to write. */
    if (s.lookahead === 0) {
      fill_window(s);
      if (s.lookahead === 0) {
        if (flush === Z_NO_FLUSH) {
          return BS_NEED_MORE;
        }
        break;      /* flush the current block */
      }
    }

    /* Output a literal byte */
    s.match_length = 0;
    //Tracevv((stderr,"%c", s->window[s->strstart]));
    /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
    bflush = _tr_tally(s, 0, s.window[s.strstart]);
    s.lookahead--;
    s.strstart++;
    if (bflush) {
      /*** FLUSH_BLOCK(s, 0); ***/
      flush_block_only(s, false);
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
      /***/
    }
  }
  s.insert = 0;
  if (flush === Z_FINISH) {
    /*** FLUSH_BLOCK(s, 1); ***/
    flush_block_only(s, true);
    if (s.strm.avail_out === 0) {
      return BS_FINISH_STARTED;
    }
    /***/
    return BS_FINISH_DONE;
  }
  if (s.sym_next) {
    /*** FLUSH_BLOCK(s, 0); ***/
    flush_block_only(s, false);
    if (s.strm.avail_out === 0) {
      return BS_NEED_MORE;
    }
    /***/
  }
  return BS_BLOCK_DONE;
};

/* Values for max_lazy_match, good_match and max_chain_length, depending on
 * the desired pack level (0..9). The values given below have been tuned to
 * exclude worst case performance for pathological files. Better values may be
 * found for specific files.
 */
function Config(good_length, max_lazy, nice_length, max_chain, func) {

  this.good_length = good_length;
  this.max_lazy = max_lazy;
  this.nice_length = nice_length;
  this.max_chain = max_chain;
  this.func = func;
}

const configuration_table = [
  /*      good lazy nice chain */
  new Config(0, 0, 0, 0, deflate_stored),          /* 0 store only */
  new Config(4, 4, 8, 4, deflate_fast),            /* 1 max speed, no lazy matches */
  new Config(4, 5, 16, 8, deflate_fast),           /* 2 */
  new Config(4, 6, 32, 32, deflate_fast),          /* 3 */

  new Config(4, 4, 16, 16, deflate_slow),          /* 4 lazy matches */
  new Config(8, 16, 32, 32, deflate_slow),         /* 5 */
  new Config(8, 16, 128, 128, deflate_slow),       /* 6 */
  new Config(8, 32, 128, 256, deflate_slow),       /* 7 */
  new Config(32, 128, 258, 1024, deflate_slow),    /* 8 */
  new Config(32, 258, 258, 4096, deflate_slow)     /* 9 max compression */
];


/* ===========================================================================
 * Initialize the "longest match" routines for a new zlib stream
 */
const lm_init = (s) => {

  s.window_size = 2 * s.w_size;

  /*** CLEAR_HASH(s); ***/
  zero(s.head); // Fill with NIL (= 0);

  /* Set the default configuration parameters:
   */
  s.max_lazy_match = configuration_table[s.level].max_lazy;
  s.good_match = configuration_table[s.level].good_length;
  s.nice_match = configuration_table[s.level].nice_length;
  s.max_chain_length = configuration_table[s.level].max_chain;

  s.strstart = 0;
  s.block_start = 0;
  s.lookahead = 0;
  s.insert = 0;
  s.match_length = s.prev_length = MIN_MATCH - 1;
  s.match_available = 0;
  s.ins_h = 0;
};


function DeflateState() {
  this.strm = null;            /* pointer back to this zlib stream */
  this.status = 0;            /* as the name implies */
  this.pending_buf = null;      /* output still pending */
  this.pending_buf_size = 0;  /* size of pending_buf */
  this.pending_out = 0;       /* next pending byte to output to the stream */
  this.pending = 0;           /* nb of bytes in the pending buffer */
  this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip */
  this.gzhead = null;         /* gzip header information to write */
  this.gzindex = 0;           /* where in extra, name, or comment */
  this.method = Z_DEFLATED; /* can only be DEFLATED */
  this.last_flush = -1;   /* value of flush param for previous deflate call */

  this.w_size = 0;  /* LZ77 window size (32K by default) */
  this.w_bits = 0;  /* log2(w_size)  (8..16) */
  this.w_mask = 0;  /* w_size - 1 */

  this.window = null;
  /* Sliding window. Input bytes are read into the second half of the window,
   * and move to the first half later to keep a dictionary of at least wSize
   * bytes. With this organization, matches are limited to a distance of
   * wSize-MAX_MATCH bytes, but this ensures that IO is always
   * performed with a length multiple of the block size.
   */

  this.window_size = 0;
  /* Actual size of window: 2*wSize, except when the user input buffer
   * is directly used as sliding window.
   */

  this.prev = null;
  /* Link to older string with same hash index. To limit the size of this
   * array to 64K, this link is maintained only for the last 32K strings.
   * An index in this array is thus a window index modulo 32K.
   */

  this.head = null;   /* Heads of the hash chains or NIL. */

  this.ins_h = 0;       /* hash index of string to be inserted */
  this.hash_size = 0;   /* number of elements in hash table */
  this.hash_bits = 0;   /* log2(hash_size) */
  this.hash_mask = 0;   /* hash_size-1 */

  this.hash_shift = 0;
  /* Number of bits by which ins_h must be shifted at each input
   * step. It must be such that after MIN_MATCH steps, the oldest
   * byte no longer takes part in the hash key, that is:
   *   hash_shift * MIN_MATCH >= hash_bits
   */

  this.block_start = 0;
  /* Window position at the beginning of the current output block. Gets
   * negative when the window is moved backwards.
   */

  this.match_length = 0;      /* length of best match */
  this.prev_match = 0;        /* previous match */
  this.match_available = 0;   /* set if previous match exists */
  this.strstart = 0;          /* start of string to insert */
  this.match_start = 0;       /* start of matching string */
  this.lookahead = 0;         /* number of valid bytes ahead in window */

  this.prev_length = 0;
  /* Length of the best match at previous step. Matches not greater than this
   * are discarded. This is used in the lazy match evaluation.
   */

  this.max_chain_length = 0;
  /* To speed up deflation, hash chains are never searched beyond this
   * length.  A higher limit improves compression ratio but degrades the
   * speed.
   */

  this.max_lazy_match = 0;
  /* Attempt to find a better match only when the current match is strictly
   * smaller than this value. This mechanism is used only for compression
   * levels >= 4.
   */
  // That's alias to max_lazy_match, don't use directly
  //this.max_insert_length = 0;
  /* Insert new strings in the hash table only if the match length is not
   * greater than this length. This saves time but degrades compression.
   * max_insert_length is used only for compression levels <= 3.
   */

  this.level = 0;     /* compression level (1..9) */
  this.strategy = 0;  /* favor or force Huffman coding*/

  this.good_match = 0;
  /* Use a faster search when the previous match is longer than this */

  this.nice_match = 0; /* Stop searching when current match exceeds this */

              /* used by trees.c: */

  /* Didn't use ct_data typedef below to suppress compiler warning */

  // struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
  // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
  // struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */

  // Use flat array of DOUBLE size, with interleaved fata,
  // because JS does not support effective
  this.dyn_ltree  = new Uint16Array(HEAP_SIZE * 2);
  this.dyn_dtree  = new Uint16Array((2 * D_CODES + 1) * 2);
  this.bl_tree    = new Uint16Array((2 * BL_CODES + 1) * 2);
  zero(this.dyn_ltree);
  zero(this.dyn_dtree);
  zero(this.bl_tree);

  this.l_desc   = null;         /* desc. for literal tree */
  this.d_desc   = null;         /* desc. for distance tree */
  this.bl_desc  = null;         /* desc. for bit length tree */

  //ush bl_count[MAX_BITS+1];
  this.bl_count = new Uint16Array(MAX_BITS + 1);
  /* number of codes at each bit length for an optimal tree */

  //int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
  this.heap = new Uint16Array(2 * L_CODES + 1);  /* heap used to build the Huffman trees */
  zero(this.heap);

  this.heap_len = 0;               /* number of elements in the heap */
  this.heap_max = 0;               /* element of largest frequency */
  /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
   * The same heap array is used to build all trees.
   */

  this.depth = new Uint16Array(2 * L_CODES + 1); //uch depth[2*L_CODES+1];
  zero(this.depth);
  /* Depth of each subtree used as tie breaker for trees of equal frequency
   */

  this.sym_buf = 0;        /* buffer for distances and literals/lengths */

  this.lit_bufsize = 0;
  /* Size of match buffer for literals/lengths.  There are 4 reasons for
   * limiting lit_bufsize to 64K:
   *   - frequencies can be kept in 16 bit counters
   *   - if compression is not successful for the first block, all input
   *     data is still in the window so we can still emit a stored block even
   *     when input comes from standard input.  (This can also be done for
   *     all blocks if lit_bufsize is not greater than 32K.)
   *   - if compression is not successful for a file smaller than 64K, we can
   *     even emit a stored file instead of a stored block (saving 5 bytes).
   *     This is applicable only for zip (not gzip or zlib).
   *   - creating new Huffman trees less frequently may not provide fast
   *     adaptation to changes in the input data statistics. (Take for
   *     example a binary file with poorly compressible code followed by
   *     a highly compressible string table.) Smaller buffer sizes give
   *     fast adaptation but have of course the overhead of transmitting
   *     trees more frequently.
   *   - I can't count above 4
   */

  this.sym_next = 0;      /* running index in sym_buf */
  this.sym_end = 0;       /* symbol table full when sym_next reaches this */

  this.opt_len = 0;       /* bit length of current block with optimal trees */
  this.static_len = 0;    /* bit length of current block with static trees */
  this.matches = 0;       /* number of string matches in current block */
  this.insert = 0;        /* bytes at end of window left to insert */


  this.bi_buf = 0;
  /* Output buffer. bits are inserted starting at the bottom (least
   * significant bits).
   */
  this.bi_valid = 0;
  /* Number of valid bits in bi_buf.  All bits above the last valid bit
   * are always zero.
   */

  // Used for window memory init. We safely ignore it for JS. That makes
  // sense only for pointers and memory check tools.
  //this.high_water = 0;
  /* High water mark offset in window for initialized bytes -- bytes above
   * this are set to zero in order to avoid memory check warnings when
   * longest match routines access bytes past the input.  This is then
   * updated to the new high water mark.
   */
}


/* =========================================================================
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
 */
const deflateStateCheck = (strm) => {

  if (!strm) {
    return 1;
  }
  const s = strm.state;
  if (!s || s.strm !== strm || (s.status !== INIT_STATE &&
//#ifdef GZIP
                                s.status !== GZIP_STATE &&
//#endif
                                s.status !== EXTRA_STATE &&
                                s.status !== NAME_STATE &&
                                s.status !== COMMENT_STATE &&
                                s.status !== HCRC_STATE &&
                                s.status !== BUSY_STATE &&
                                s.status !== FINISH_STATE)) {
    return 1;
  }
  return 0;
};


const deflateResetKeep = (strm) => {

  if (deflateStateCheck(strm)) {
    return err(strm, Z_STREAM_ERROR);
  }

  strm.total_in = strm.total_out = 0;
  strm.data_type = Z_UNKNOWN;

  const s = strm.state;
  s.pending = 0;
  s.pending_out = 0;

  if (s.wrap < 0) {
    s.wrap = -s.wrap;
    /* was made negative by deflate(..., Z_FINISH); */
  }
  s.status =
//#ifdef GZIP
    s.wrap === 2 ? GZIP_STATE :
//#endif
    s.wrap ? INIT_STATE : BUSY_STATE;
  strm.adler = (s.wrap === 2) ?
    0  // crc32(0, Z_NULL, 0)
  :
    1; // adler32(0, Z_NULL, 0)
  s.last_flush = -2;
  _tr_init(s);
  return Z_OK;
};


const deflateReset = (strm) => {

  const ret = deflateResetKeep(strm);
  if (ret === Z_OK) {
    lm_init(strm.state);
  }
  return ret;
};


const deflateSetHeader = (strm, head) => {

  if (deflateStateCheck(strm) || strm.state.wrap !== 2) {
    return Z_STREAM_ERROR;
  }
  strm.state.gzhead = head;
  return Z_OK;
};


const deflateInit2 = (strm, level, method, windowBits, memLevel, strategy) => {

  if (!strm) { // === Z_NULL
    return Z_STREAM_ERROR;
  }
  let wrap = 1;

  if (level === Z_DEFAULT_COMPRESSION) {
    level = 6;
  }

  if (windowBits < 0) { /* suppress zlib wrapper */
    wrap = 0;
    windowBits = -windowBits;
  }

  else if (windowBits > 15) {
    wrap = 2;           /* write gzip wrapper instead */
    windowBits -= 16;
  }


  if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED ||
    windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
    strategy < 0 || strategy > Z_FIXED || (windowBits === 8 && wrap !== 1)) {
    return err(strm, Z_STREAM_ERROR);
  }


  if (windowBits === 8) {
    windowBits = 9;
  }
  /* until 256-byte window bug fixed */

  const s = new DeflateState();

  strm.state = s;
  s.strm = strm;
  s.status = INIT_STATE;     /* to pass state test in deflateReset() */

  s.wrap = wrap;
  s.gzhead = null;
  s.w_bits = windowBits;
  s.w_size = 1 << s.w_bits;
  s.w_mask = s.w_size - 1;

  s.hash_bits = memLevel + 7;
  s.hash_size = 1 << s.hash_bits;
  s.hash_mask = s.hash_size - 1;
  s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH);

  s.window = new Uint8Array(s.w_size * 2);
  s.head = new Uint16Array(s.hash_size);
  s.prev = new Uint16Array(s.w_size);

  // Don't need mem init magic for JS.
  //s.high_water = 0;  /* nothing written to s->window yet */

  s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */

  /* We overlay pending_buf and sym_buf. This works since the average size
   * for length/distance pairs over any compressed block is assured to be 31
   * bits or less.
   *
   * Analysis: The longest fixed codes are a length code of 8 bits plus 5
   * extra bits, for lengths 131 to 257. The longest fixed distance codes are
   * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
   * possible fixed-codes length/distance pair is then 31 bits total.
   *
   * sym_buf starts one-fourth of the way into pending_buf. So there are
   * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
   * in sym_buf is three bytes -- two for the distance and one for the
   * literal/length. As each symbol is consumed, the pointer to the next
   * sym_buf value to read moves forward three bytes. From that symbol, up to
   * 31 bits are written to pending_buf. The closest the written pending_buf
   * bits gets to the next sym_buf symbol to read is just before the last
   * code is written. At that time, 31*(n-2) bits have been written, just
   * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
   * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
   * symbols are written.) The closest the writing gets to what is unread is
   * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
   * can range from 128 to 32768.
   *
   * Therefore, at a minimum, there are 142 bits of space between what is
   * written and what is read in the overlain buffers, so the symbols cannot
   * be overwritten by the compressed data. That space is actually 139 bits,
   * due to the three-bit fixed-code block header.
   *
   * That covers the case where either Z_FIXED is specified, forcing fixed
   * codes, or when the use of fixed codes is chosen, because that choice
   * results in a smaller compressed block than dynamic codes. That latter
   * condition then assures that the above analysis also covers all dynamic
   * blocks. A dynamic-code block will only be chosen to be emitted if it has
   * fewer bits than a fixed-code block would for the same set of symbols.
   * Therefore its average symbol length is assured to be less than 31. So
   * the compressed data for a dynamic block also cannot overwrite the
   * symbols from which it is being constructed.
   */

  s.pending_buf_size = s.lit_bufsize * 4;
  s.pending_buf = new Uint8Array(s.pending_buf_size);

  // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`)
  //s->sym_buf = s->pending_buf + s->lit_bufsize;
  s.sym_buf = s.lit_bufsize;

  //s->sym_end = (s->lit_bufsize - 1) * 3;
  s.sym_end = (s.lit_bufsize - 1) * 3;
  /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
   * on 16 bit machines and because stored blocks are restricted to
   * 64K-1 bytes.
   */

  s.level = level;
  s.strategy = strategy;
  s.method = method;

  return deflateReset(strm);
};

const deflateInit = (strm, level) => {

  return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY);
};


/* ========================================================================= */
const deflate = (strm, flush) => {

  if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
    return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR;
  }

  const s = strm.state;

  if (!strm.output ||
      (strm.avail_in !== 0 && !strm.input) ||
      (s.status === FINISH_STATE && flush !== Z_FINISH)) {
    return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR);
  }

  const old_flush = s.last_flush;
  s.last_flush = flush;

  /* Flush as much pending output as possible */
  if (s.pending !== 0) {
    flush_pending(strm);
    if (strm.avail_out === 0) {
      /* Since avail_out is 0, deflate will be called again with
       * more output space, but possibly with both pending and
       * avail_in equal to zero. There won't be anything to do,
       * but this is not an error situation so make sure we
       * return OK instead of BUF_ERROR at next call of deflate:
       */
      s.last_flush = -1;
      return Z_OK;
    }

    /* Make sure there is something to do and avoid duplicate consecutive
     * flushes. For repeated and useless calls with Z_FINISH, we keep
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
     */
  } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) &&
    flush !== Z_FINISH) {
    return err(strm, Z_BUF_ERROR);
  }

  /* User must not provide more input after the first FINISH: */
  if (s.status === FINISH_STATE && strm.avail_in !== 0) {
    return err(strm, Z_BUF_ERROR);
  }

  /* Write the header */
  if (s.status === INIT_STATE && s.wrap === 0) {
    s.status = BUSY_STATE;
  }
  if (s.status === INIT_STATE) {
    /* zlib header */
    let header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8;
    let level_flags = -1;

    if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) {
      level_flags = 0;
    } else if (s.level < 6) {
      level_flags = 1;
    } else if (s.level === 6) {
      level_flags = 2;
    } else {
      level_flags = 3;
    }
    header |= (level_flags << 6);
    if (s.strstart !== 0) { header |= PRESET_DICT; }
    header += 31 - (header % 31);

    putShortMSB(s, header);

    /* Save the adler32 of the preset dictionary: */
    if (s.strstart !== 0) {
      putShortMSB(s, strm.adler >>> 16);
      putShortMSB(s, strm.adler & 0xffff);
    }
    strm.adler = 1; // adler32(0L, Z_NULL, 0);
    s.status = BUSY_STATE;

    /* Compression must start with an empty pending buffer */
    flush_pending(strm);
    if (s.pending !== 0) {
      s.last_flush = -1;
      return Z_OK;
    }
  }
//#ifdef GZIP
  if (s.status === GZIP_STATE) {
    /* gzip header */
    strm.adler = 0;  //crc32(0L, Z_NULL, 0);
    put_byte(s, 31);
    put_byte(s, 139);
    put_byte(s, 8);
    if (!s.gzhead) { // s->gzhead == Z_NULL
      put_byte(s, 0);
      put_byte(s, 0);
      put_byte(s, 0);
      put_byte(s, 0);
      put_byte(s, 0);
      put_byte(s, s.level === 9 ? 2 :
                  (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
                   4 : 0));
      put_byte(s, OS_CODE);
      s.status = BUSY_STATE;

      /* Compression must start with an empty pending buffer */
      flush_pending(strm);
      if (s.pending !== 0) {
        s.last_flush = -1;
        return Z_OK;
      }
    }
    else {
      put_byte(s, (s.gzhead.text ? 1 : 0) +
                  (s.gzhead.hcrc ? 2 : 0) +
                  (!s.gzhead.extra ? 0 : 4) +
                  (!s.gzhead.name ? 0 : 8) +
                  (!s.gzhead.comment ? 0 : 16)
      );
      put_byte(s, s.gzhead.time & 0xff);
      put_byte(s, (s.gzhead.time >> 8) & 0xff);
      put_byte(s, (s.gzhead.time >> 16) & 0xff);
      put_byte(s, (s.gzhead.time >> 24) & 0xff);
      put_byte(s, s.level === 9 ? 2 :
                  (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
                   4 : 0));
      put_byte(s, s.gzhead.os & 0xff);
      if (s.gzhead.extra && s.gzhead.extra.length) {
        put_byte(s, s.gzhead.extra.length & 0xff);
        put_byte(s, (s.gzhead.extra.length >> 8) & 0xff);
      }
      if (s.gzhead.hcrc) {
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0);
      }
      s.gzindex = 0;
      s.status = EXTRA_STATE;
    }
  }
  if (s.status === EXTRA_STATE) {
    if (s.gzhead.extra/* != Z_NULL*/) {
      let beg = s.pending;   /* start of bytes to update crc */
      let left = (s.gzhead.extra.length & 0xffff) - s.gzindex;
      while (s.pending + left > s.pending_buf_size) {
        let copy = s.pending_buf_size - s.pending;
        // zmemcpy(s.pending_buf + s.pending,
        //    s.gzhead.extra + s.gzindex, copy);
        s.pending_buf.set(s.gzhead.extra.subarray(s.gzindex, s.gzindex + copy), s.pending);
        s.pending = s.pending_buf_size;
        //--- HCRC_UPDATE(beg) ---//
        if (s.gzhead.hcrc && s.pending > beg) {
          strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
        }
        //---//
        s.gzindex += copy;
        flush_pending(strm);
        if (s.pending !== 0) {
          s.last_flush = -1;
          return Z_OK;
        }
        beg = 0;
        left -= copy;
      }
      // JS specific: s.gzhead.extra may be TypedArray or Array for backward compatibility
      //              TypedArray.slice and TypedArray.from don't exist in IE10-IE11
      let gzhead_extra = new Uint8Array(s.gzhead.extra);
      // zmemcpy(s->pending_buf + s->pending,
      //     s->gzhead->extra + s->gzindex, left);
      s.pending_buf.set(gzhead_extra.subarray(s.gzindex, s.gzindex + left), s.pending);
      s.pending += left;
      //--- HCRC_UPDATE(beg) ---//
      if (s.gzhead.hcrc && s.pending > beg) {
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
      }
      //---//
      s.gzindex = 0;
    }
    s.status = NAME_STATE;
  }
  if (s.status === NAME_STATE) {
    if (s.gzhead.name/* != Z_NULL*/) {
      let beg = s.pending;   /* start of bytes to update crc */
      let val;
      do {
        if (s.pending === s.pending_buf_size) {
          //--- HCRC_UPDATE(beg) ---//
          if (s.gzhead.hcrc && s.pending > beg) {
            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
          }
          //---//
          flush_pending(strm);
          if (s.pending !== 0) {
            s.last_flush = -1;
            return Z_OK;
          }
          beg = 0;
        }
        // JS specific: little magic to add zero terminator to end of string
        if (s.gzindex < s.gzhead.name.length) {
          val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff;
        } else {
          val = 0;
        }
        put_byte(s, val);
      } while (val !== 0);
      //--- HCRC_UPDATE(beg) ---//
      if (s.gzhead.hcrc && s.pending > beg) {
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
      }
      //---//
      s.gzindex = 0;
    }
    s.status = COMMENT_STATE;
  }
  if (s.status === COMMENT_STATE) {
    if (s.gzhead.comment/* != Z_NULL*/) {
      let beg = s.pending;   /* start of bytes to update crc */
      let val;
      do {
        if (s.pending === s.pending_buf_size) {
          //--- HCRC_UPDATE(beg) ---//
          if (s.gzhead.hcrc && s.pending > beg) {
            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
          }
          //---//
          flush_pending(strm);
          if (s.pending !== 0) {
            s.last_flush = -1;
            return Z_OK;
          }
          beg = 0;
        }
        // JS specific: little magic to add zero terminator to end of string
        if (s.gzindex < s.gzhead.comment.length) {
          val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff;
        } else {
          val = 0;
        }
        put_byte(s, val);
      } while (val !== 0);
      //--- HCRC_UPDATE(beg) ---//
      if (s.gzhead.hcrc && s.pending > beg) {
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
      }
      //---//
    }
    s.status = HCRC_STATE;
  }
  if (s.status === HCRC_STATE) {
    if (s.gzhead.hcrc) {
      if (s.pending + 2 > s.pending_buf_size) {
        flush_pending(strm);
        if (s.pending !== 0) {
          s.last_flush = -1;
          return Z_OK;
        }
      }
      put_byte(s, strm.adler & 0xff);
      put_byte(s, (strm.adler >> 8) & 0xff);
      strm.adler = 0; //crc32(0L, Z_NULL, 0);
    }
    s.status = BUSY_STATE;

    /* Compression must start with an empty pending buffer */
    flush_pending(strm);
    if (s.pending !== 0) {
      s.last_flush = -1;
      return Z_OK;
    }
  }
//#endif

  /* Start a new block or continue the current one.
   */
  if (strm.avail_in !== 0 || s.lookahead !== 0 ||
    (flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) {
    let bstate = s.level === 0 ? deflate_stored(s, flush) :
                 s.strategy === Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
                 s.strategy === Z_RLE ? deflate_rle(s, flush) :
                 configuration_table[s.level].func(s, flush);

    if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) {
      s.status = FINISH_STATE;
    }
    if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) {
      if (strm.avail_out === 0) {
        s.last_flush = -1;
        /* avoid BUF_ERROR next call, see above */
      }
      return Z_OK;
      /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
       * of deflate should use the same flush parameter to make sure
       * that the flush is complete. So we don't have to output an
       * empty block here, this will be done at next call. This also
       * ensures that for a very small output buffer, we emit at most
       * one empty block.
       */
    }
    if (bstate === BS_BLOCK_DONE) {
      if (flush === Z_PARTIAL_FLUSH) {
        _tr_align(s);
      }
      else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */

        _tr_stored_block(s, 0, 0, false);
        /* For a full flush, this empty block will be recognized
         * as a special marker by inflate_sync().
         */
        if (flush === Z_FULL_FLUSH) {
          /*** CLEAR_HASH(s); ***/             /* forget history */
          zero(s.head); // Fill with NIL (= 0);

          if (s.lookahead === 0) {
            s.strstart = 0;
            s.block_start = 0;
            s.insert = 0;
          }
        }
      }
      flush_pending(strm);
      if (strm.avail_out === 0) {
        s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */
        return Z_OK;
      }
    }
  }

  if (flush !== Z_FINISH) { return Z_OK; }
  if (s.wrap <= 0) { return Z_STREAM_END; }

  /* Write the trailer */
  if (s.wrap === 2) {
    put_byte(s, strm.adler & 0xff);
    put_byte(s, (strm.adler >> 8) & 0xff);
    put_byte(s, (strm.adler >> 16) & 0xff);
    put_byte(s, (strm.adler >> 24) & 0xff);
    put_byte(s, strm.total_in & 0xff);
    put_byte(s, (strm.total_in >> 8) & 0xff);
    put_byte(s, (strm.total_in >> 16) & 0xff);
    put_byte(s, (strm.total_in >> 24) & 0xff);
  }
  else
  {
    putShortMSB(s, strm.adler >>> 16);
    putShortMSB(s, strm.adler & 0xffff);
  }

  flush_pending(strm);
  /* If avail_out is zero, the application will call deflate again
   * to flush the rest.
   */
  if (s.wrap > 0) { s.wrap = -s.wrap; }
  /* write the trailer only once! */
  return s.pending !== 0 ? Z_OK : Z_STREAM_END;
};


const deflateEnd = (strm) => {

  if (deflateStateCheck(strm)) {
    return Z_STREAM_ERROR;
  }

  const status = strm.state.status;

  strm.state = null;

  return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK;
};


/* =========================================================================
 * Initializes the compression dictionary from the given byte
 * sequence without producing any compressed output.
 */
const deflateSetDictionary = (strm, dictionary) => {

  let dictLength = dictionary.length;

  if (deflateStateCheck(strm)) {
    return Z_STREAM_ERROR;
  }

  const s = strm.state;
  const wrap = s.wrap;

  if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) {
    return Z_STREAM_ERROR;
  }

  /* when using zlib wrappers, compute Adler-32 for provided dictionary */
  if (wrap === 1) {
    /* adler32(strm->adler, dictionary, dictLength); */
    strm.adler = adler32(strm.adler, dictionary, dictLength, 0);
  }

  s.wrap = 0;   /* avoid computing Adler-32 in read_buf */

  /* if dictionary would fill window, just replace the history */
  if (dictLength >= s.w_size) {
    if (wrap === 0) {            /* already empty otherwise */
      /*** CLEAR_HASH(s); ***/
      zero(s.head); // Fill with NIL (= 0);
      s.strstart = 0;
      s.block_start = 0;
      s.insert = 0;
    }
    /* use the tail */
    // dictionary = dictionary.slice(dictLength - s.w_size);
    let tmpDict = new Uint8Array(s.w_size);
    tmpDict.set(dictionary.subarray(dictLength - s.w_size, dictLength), 0);
    dictionary = tmpDict;
    dictLength = s.w_size;
  }
  /* insert dictionary into window and hash */
  const avail = strm.avail_in;
  const next = strm.next_in;
  const input = strm.input;
  strm.avail_in = dictLength;
  strm.next_in = 0;
  strm.input = dictionary;
  fill_window(s);
  while (s.lookahead >= MIN_MATCH) {
    let str = s.strstart;
    let n = s.lookahead - (MIN_MATCH - 1);
    do {
      /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
      s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]);

      s.prev[str & s.w_mask] = s.head[s.ins_h];

      s.head[s.ins_h] = str;
      str++;
    } while (--n);
    s.strstart = str;
    s.lookahead = MIN_MATCH - 1;
    fill_window(s);
  }
  s.strstart += s.lookahead;
  s.block_start = s.strstart;
  s.insert = s.lookahead;
  s.lookahead = 0;
  s.match_length = s.prev_length = MIN_MATCH - 1;
  s.match_available = 0;
  strm.next_in = next;
  strm.input = input;
  strm.avail_in = avail;
  s.wrap = wrap;
  return Z_OK;
};


module.exports.deflateInit = deflateInit;
module.exports.deflateInit2 = deflateInit2;
module.exports.deflateReset = deflateReset;
module.exports.deflateResetKeep = deflateResetKeep;
module.exports.deflateSetHeader = deflateSetHeader;
module.exports.deflate = deflate;
module.exports.deflateEnd = deflateEnd;
module.exports.deflateSetDictionary = deflateSetDictionary;
module.exports.deflateInfo = 'pako deflate (from Nodeca project)';

/* Not implemented
module.exports.deflateBound = deflateBound;
module.exports.deflateCopy = deflateCopy;
module.exports.deflateGetDictionary = deflateGetDictionary;
module.exports.deflateParams = deflateParams;
module.exports.deflatePending = deflatePending;
module.exports.deflatePrime = deflatePrime;
module.exports.deflateTune = deflateTune;
*/

},{"./adler32":11,"./constants":12,"./crc32":13,"./messages":19,"./trees":20}],15:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

function GZheader() {
  /* true if compressed data believed to be text */
  this.text       = 0;
  /* modification time */
  this.time       = 0;
  /* extra flags (not used when writing a gzip file) */
  this.xflags     = 0;
  /* operating system */
  this.os         = 0;
  /* pointer to extra field or Z_NULL if none */
  this.extra      = null;
  /* extra field length (valid if extra != Z_NULL) */
  this.extra_len  = 0; // Actually, we don't need it in JS,
                       // but leave for few code modifications

  //
  // Setup limits is not necessary because in js we should not preallocate memory
  // for inflate use constant limit in 65536 bytes
  //

  /* space at extra (only when reading header) */
  // this.extra_max  = 0;
  /* pointer to zero-terminated file name or Z_NULL */
  this.name       = '';
  /* space at name (only when reading header) */
  // this.name_max   = 0;
  /* pointer to zero-terminated comment or Z_NULL */
  this.comment    = '';
  /* space at comment (only when reading header) */
  // this.comm_max   = 0;
  /* true if there was or will be a header crc */
  this.hcrc       = 0;
  /* true when done reading gzip header (not used when writing a gzip file) */
  this.done       = false;
}

module.exports = GZheader;

},{}],16:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

// See state defs from inflate.js
const BAD = 16209;       /* got a data error -- remain here until reset */
const TYPE = 16191;      /* i: waiting for type bits, including last-flag bit */

/*
   Decode literal, length, and distance codes and write out the resulting
   literal and match bytes until either not enough input or output is
   available, an end-of-block is encountered, or a data error is encountered.
   When large enough input and output buffers are supplied to inflate(), for
   example, a 16K input buffer and a 64K output buffer, more than 95% of the
   inflate execution time is spent in this routine.

   Entry assumptions:

        state.mode === LEN
        strm.avail_in >= 6
        strm.avail_out >= 258
        start >= strm.avail_out
        state.bits < 8

   On return, state.mode is one of:

        LEN -- ran out of enough output space or enough available input
        TYPE -- reached end of block code, inflate() to interpret next block
        BAD -- error in block data

   Notes:

    - The maximum input bits used by a length/distance pair is 15 bits for the
      length code, 5 bits for the length extra, 15 bits for the distance code,
      and 13 bits for the distance extra.  This totals 48 bits, or six bytes.
      Therefore if strm.avail_in >= 6, then there is enough input to avoid
      checking for available input while decoding.

    - The maximum bytes that a single length/distance pair can output is 258
      bytes, which is the maximum length that can be coded.  inflate_fast()
      requires strm.avail_out >= 258 for each loop to avoid checking for
      output space.
 */
module.exports = function inflate_fast(strm, start) {
  let _in;                    /* local strm.input */
  let last;                   /* have enough input while in < last */
  let _out;                   /* local strm.output */
  let beg;                    /* inflate()'s initial strm.output */
  let end;                    /* while out < end, enough space available */
//#ifdef INFLATE_STRICT
  let dmax;                   /* maximum distance from zlib header */
//#endif
  let wsize;                  /* window size or zero if not using window */
  let whave;                  /* valid bytes in the window */
  let wnext;                  /* window write index */
  // Use `s_window` instead `window`, avoid conflict with instrumentation tools
  let s_window;               /* allocated sliding window, if wsize != 0 */
  let hold;                   /* local strm.hold */
  let bits;                   /* local strm.bits */
  let lcode;                  /* local strm.lencode */
  let dcode;                  /* local strm.distcode */
  let lmask;                  /* mask for first level of length codes */
  let dmask;                  /* mask for first level of distance codes */
  let here;                   /* retrieved table entry */
  let op;                     /* code bits, operation, extra bits, or */
                              /*  window position, window bytes to copy */
  let len;                    /* match length, unused bytes */
  let dist;                   /* match distance */
  let from;                   /* where to copy match from */
  let from_source;


  let input, output; // JS specific, because we have no pointers

  /* copy state to local variables */
  const state = strm.state;
  //here = state.here;
  _in = strm.next_in;
  input = strm.input;
  last = _in + (strm.avail_in - 5);
  _out = strm.next_out;
  output = strm.output;
  beg = _out - (start - strm.avail_out);
  end = _out + (strm.avail_out - 257);
//#ifdef INFLATE_STRICT
  dmax = state.dmax;
//#endif
  wsize = state.wsize;
  whave = state.whave;
  wnext = state.wnext;
  s_window = state.window;
  hold = state.hold;
  bits = state.bits;
  lcode = state.lencode;
  dcode = state.distcode;
  lmask = (1 << state.lenbits) - 1;
  dmask = (1 << state.distbits) - 1;


  /* decode literals and length/distances until end-of-block or not enough
     input data or output space */

  top:
  do {
    if (bits < 15) {
      hold += input[_in++] << bits;
      bits += 8;
      hold += input[_in++] << bits;
      bits += 8;
    }

    here = lcode[hold & lmask];

    dolen:
    for (;;) { // Goto emulation
      op = here >>> 24/*here.bits*/;
      hold >>>= op;
      bits -= op;
      op = (here >>> 16) & 0xff/*here.op*/;
      if (op === 0) {                          /* literal */
        //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
        //        "inflate:         literal '%c'\n" :
        //        "inflate:         literal 0x%02x\n", here.val));
        output[_out++] = here & 0xffff/*here.val*/;
      }
      else if (op & 16) {                     /* length base */
        len = here & 0xffff/*here.val*/;
        op &= 15;                           /* number of extra bits */
        if (op) {
          if (bits < op) {
            hold += input[_in++] << bits;
            bits += 8;
          }
          len += hold & ((1 << op) - 1);
          hold >>>= op;
          bits -= op;
        }
        //Tracevv((stderr, "inflate:         length %u\n", len));
        if (bits < 15) {
          hold += input[_in++] << bits;
          bits += 8;
          hold += input[_in++] << bits;
          bits += 8;
        }
        here = dcode[hold & dmask];

        dodist:
        for (;;) { // goto emulation
          op = here >>> 24/*here.bits*/;
          hold >>>= op;
          bits -= op;
          op = (here >>> 16) & 0xff/*here.op*/;

          if (op & 16) {                      /* distance base */
            dist = here & 0xffff/*here.val*/;
            op &= 15;                       /* number of extra bits */
            if (bits < op) {
              hold += input[_in++] << bits;
              bits += 8;
              if (bits < op) {
                hold += input[_in++] << bits;
                bits += 8;
              }
            }
            dist += hold & ((1 << op) - 1);
//#ifdef INFLATE_STRICT
            if (dist > dmax) {
              strm.msg = 'invalid distance too far back';
              state.mode = BAD;
              break top;
            }
//#endif
            hold >>>= op;
            bits -= op;
            //Tracevv((stderr, "inflate:         distance %u\n", dist));
            op = _out - beg;                /* max distance in output */
            if (dist > op) {                /* see if copy from window */
              op = dist - op;               /* distance back in window */
              if (op > whave) {
                if (state.sane) {
                  strm.msg = 'invalid distance too far back';
                  state.mode = BAD;
                  break top;
                }

// (!) This block is disabled in zlib defaults,
// don't enable it for binary compatibility
//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
//                if (len <= op - whave) {
//                  do {
//                    output[_out++] = 0;
//                  } while (--len);
//                  continue top;
//                }
//                len -= op - whave;
//                do {
//                  output[_out++] = 0;
//                } while (--op > whave);
//                if (op === 0) {
//                  from = _out - dist;
//                  do {
//                    output[_out++] = output[from++];
//                  } while (--len);
//                  continue top;
//                }
//#endif
              }
              from = 0; // window index
              from_source = s_window;
              if (wnext === 0) {           /* very common case */
                from += wsize - op;
                if (op < len) {         /* some from window */
                  len -= op;
                  do {
                    output[_out++] = s_window[from++];
                  } while (--op);
                  from = _out - dist;  /* rest from output */
                  from_source = output;
                }
              }
              else if (wnext < op) {      /* wrap around window */
                from += wsize + wnext - op;
                op -= wnext;
                if (op < len) {         /* some from end of window */
                  len -= op;
                  do {
                    output[_out++] = s_window[from++];
                  } while (--op);
                  from = 0;
                  if (wnext < len) {  /* some from start of window */
                    op = wnext;
                    len -= op;
                    do {
                      output[_out++] = s_window[from++];
                    } while (--op);
                    from = _out - dist;      /* rest from output */
                    from_source = output;
                  }
                }
              }
              else {                      /* contiguous in window */
                from += wnext - op;
                if (op < len) {         /* some from window */
                  len -= op;
                  do {
                    output[_out++] = s_window[from++];
                  } while (--op);
                  from = _out - dist;  /* rest from output */
                  from_source = output;
                }
              }
              while (len > 2) {
                output[_out++] = from_source[from++];
                output[_out++] = from_source[from++];
                output[_out++] = from_source[from++];
                len -= 3;
              }
              if (len) {
                output[_out++] = from_source[from++];
                if (len > 1) {
                  output[_out++] = from_source[from++];
                }
              }
            }
            else {
              from = _out - dist;          /* copy direct from output */
              do {                        /* minimum length is three */
                output[_out++] = output[from++];
                output[_out++] = output[from++];
                output[_out++] = output[from++];
                len -= 3;
              } while (len > 2);
              if (len) {
                output[_out++] = output[from++];
                if (len > 1) {
                  output[_out++] = output[from++];
                }
              }
            }
          }
          else if ((op & 64) === 0) {          /* 2nd level distance code */
            here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
            continue dodist;
          }
          else {
            strm.msg = 'invalid distance code';
            state.mode = BAD;
            break top;
          }

          break; // need to emulate goto via "continue"
        }
      }
      else if ((op & 64) === 0) {              /* 2nd level length code */
        here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
        continue dolen;
      }
      else if (op & 32) {                     /* end-of-block */
        //Tracevv((stderr, "inflate:         end of block\n"));
        state.mode = TYPE;
        break top;
      }
      else {
        strm.msg = 'invalid literal/length code';
        state.mode = BAD;
        break top;
      }

      break; // need to emulate goto via "continue"
    }
  } while (_in < last && _out < end);

  /* return unused bytes (on entry, bits < 8, so in won't go too far back) */
  len = bits >> 3;
  _in -= len;
  bits -= len << 3;
  hold &= (1 << bits) - 1;

  /* update state and return */
  strm.next_in = _in;
  strm.next_out = _out;
  strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last));
  strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end));
  state.hold = hold;
  state.bits = bits;
  return;
};

},{}],17:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

const adler32       = require('./adler32');
const crc32         = require('./crc32');
const inflate_fast  = require('./inffast');
const inflate_table = require('./inftrees');

const CODES = 0;
const LENS = 1;
const DISTS = 2;

/* Public constants ==========================================================*/
/* ===========================================================================*/

const {
  Z_FINISH, Z_BLOCK, Z_TREES,
  Z_OK, Z_STREAM_END, Z_NEED_DICT, Z_STREAM_ERROR, Z_DATA_ERROR, Z_MEM_ERROR, Z_BUF_ERROR,
  Z_DEFLATED
} = require('./constants');


/* STATES ====================================================================*/
/* ===========================================================================*/


const    HEAD = 16180;       /* i: waiting for magic header */
const    FLAGS = 16181;      /* i: waiting for method and flags (gzip) */
const    TIME = 16182;       /* i: waiting for modification time (gzip) */
const    OS = 16183;         /* i: waiting for extra flags and operating system (gzip) */
const    EXLEN = 16184;      /* i: waiting for extra length (gzip) */
const    EXTRA = 16185;      /* i: waiting for extra bytes (gzip) */
const    NAME = 16186;       /* i: waiting for end of file name (gzip) */
const    COMMENT = 16187;    /* i: waiting for end of comment (gzip) */
const    HCRC = 16188;       /* i: waiting for header crc (gzip) */
const    DICTID = 16189;    /* i: waiting for dictionary check value */
const    DICT = 16190;      /* waiting for inflateSetDictionary() call */
const        TYPE = 16191;      /* i: waiting for type bits, including last-flag bit */
const        TYPEDO = 16192;    /* i: same, but skip check to exit inflate on new block */
const        STORED = 16193;    /* i: waiting for stored size (length and complement) */
const        COPY_ = 16194;     /* i/o: same as COPY below, but only first time in */
const        COPY = 16195;      /* i/o: waiting for input or output to copy stored block */
const        TABLE = 16196;     /* i: waiting for dynamic block table lengths */
const        LENLENS = 16197;   /* i: waiting for code length code lengths */
const        CODELENS = 16198;  /* i: waiting for length/lit and distance code lengths */
const            LEN_ = 16199;      /* i: same as LEN below, but only first time in */
const            LEN = 16200;       /* i: waiting for length/lit/eob code */
const            LENEXT = 16201;    /* i: waiting for length extra bits */
const            DIST = 16202;      /* i: waiting for distance code */
const            DISTEXT = 16203;   /* i: waiting for distance extra bits */
const            MATCH = 16204;     /* o: waiting for output space to copy string */
const            LIT = 16205;       /* o: waiting for output space to write literal */
const    CHECK = 16206;     /* i: waiting for 32-bit check value */
const    LENGTH = 16207;    /* i: waiting for 32-bit length (gzip) */
const    DONE = 16208;      /* finished check, done -- remain here until reset */
const    BAD = 16209;       /* got a data error -- remain here until reset */
const    MEM = 16210;       /* got an inflate() memory error -- remain here until reset */
const    SYNC = 16211;      /* looking for synchronization bytes to restart inflate() */

/* ===========================================================================*/



const ENOUGH_LENS = 852;
const ENOUGH_DISTS = 592;
//const ENOUGH =  (ENOUGH_LENS+ENOUGH_DISTS);

const MAX_WBITS = 15;
/* 32K LZ77 window */
const DEF_WBITS = MAX_WBITS;


const zswap32 = (q) => {

  return  (((q >>> 24) & 0xff) +
          ((q >>> 8) & 0xff00) +
          ((q & 0xff00) << 8) +
          ((q & 0xff) << 24));
};


function InflateState() {
  this.strm = null;           /* pointer back to this zlib stream */
  this.mode = 0;              /* current inflate mode */
  this.last = false;          /* true if processing last block */
  this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip,
                                 bit 2 true to validate check value */
  this.havedict = false;      /* true if dictionary provided */
  this.flags = 0;             /* gzip header method and flags (0 if zlib), or
                                 -1 if raw or no header yet */
  this.dmax = 0;              /* zlib header max distance (INFLATE_STRICT) */
  this.check = 0;             /* protected copy of check value */
  this.total = 0;             /* protected copy of output count */
  // TODO: may be {}
  this.head = null;           /* where to save gzip header information */

  /* sliding window */
  this.wbits = 0;             /* log base 2 of requested window size */
  this.wsize = 0;             /* window size or zero if not using window */
  this.whave = 0;             /* valid bytes in the window */
  this.wnext = 0;             /* window write index */
  this.window = null;         /* allocated sliding window, if needed */

  /* bit accumulator */
  this.hold = 0;              /* input bit accumulator */
  this.bits = 0;              /* number of bits in "in" */

  /* for string and stored block copying */
  this.length = 0;            /* literal or length of data to copy */
  this.offset = 0;            /* distance back to copy string from */

  /* for table and code decoding */
  this.extra = 0;             /* extra bits needed */

  /* fixed and dynamic code tables */
  this.lencode = null;          /* starting table for length/literal codes */
  this.distcode = null;         /* starting table for distance codes */
  this.lenbits = 0;           /* index bits for lencode */
  this.distbits = 0;          /* index bits for distcode */

  /* dynamic table building */
  this.ncode = 0;             /* number of code length code lengths */
  this.nlen = 0;              /* number of length code lengths */
  this.ndist = 0;             /* number of distance code lengths */
  this.have = 0;              /* number of code lengths in lens[] */
  this.next = null;              /* next available space in codes[] */

  this.lens = new Uint16Array(320); /* temporary storage for code lengths */
  this.work = new Uint16Array(288); /* work area for code table building */

  /*
   because we don't have pointers in js, we use lencode and distcode directly
   as buffers so we don't need codes
  */
  //this.codes = new Int32Array(ENOUGH);       /* space for code tables */
  this.lendyn = null;              /* dynamic table for length/literal codes (JS specific) */
  this.distdyn = null;             /* dynamic table for distance codes (JS specific) */
  this.sane = 0;                   /* if false, allow invalid distance too far */
  this.back = 0;                   /* bits back of last unprocessed length/lit */
  this.was = 0;                    /* initial length of match */
}


const inflateStateCheck = (strm) => {

  if (!strm) {
    return 1;
  }
  const state = strm.state;
  if (!state || state.strm !== strm ||
    state.mode < HEAD || state.mode > SYNC) {
    return 1;
  }
  return 0;
};


const inflateResetKeep = (strm) => {

  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR; }
  const state = strm.state;
  strm.total_in = strm.total_out = state.total = 0;
  strm.msg = ''; /*Z_NULL*/
  if (state.wrap) {       /* to support ill-conceived Java test suite */
    strm.adler = state.wrap & 1;
  }
  state.mode = HEAD;
  state.last = 0;
  state.havedict = 0;
  state.flags = -1;
  state.dmax = 32768;
  state.head = null/*Z_NULL*/;
  state.hold = 0;
  state.bits = 0;
  //state.lencode = state.distcode = state.next = state.codes;
  state.lencode = state.lendyn = new Int32Array(ENOUGH_LENS);
  state.distcode = state.distdyn = new Int32Array(ENOUGH_DISTS);

  state.sane = 1;
  state.back = -1;
  //Tracev((stderr, "inflate: reset\n"));
  return Z_OK;
};


const inflateReset = (strm) => {

  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR; }
  const state = strm.state;
  state.wsize = 0;
  state.whave = 0;
  state.wnext = 0;
  return inflateResetKeep(strm);

};


const inflateReset2 = (strm, windowBits) => {
  let wrap;

  /* get the state */
  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR; }
  const state = strm.state;

  /* extract wrap request from windowBits parameter */
  if (windowBits < 0) {
    wrap = 0;
    windowBits = -windowBits;
  }
  else {
    wrap = (windowBits >> 4) + 5;
    if (windowBits < 48) {
      windowBits &= 15;
    }
  }

  /* set number of window bits, free window if different */
  if (windowBits && (windowBits < 8 || windowBits > 15)) {
    return Z_STREAM_ERROR;
  }
  if (state.window !== null && state.wbits !== windowBits) {
    state.window = null;
  }

  /* update state and reset the rest of it */
  state.wrap = wrap;
  state.wbits = windowBits;
  return inflateReset(strm);
};


const inflateInit2 = (strm, windowBits) => {

  if (!strm) { return Z_STREAM_ERROR; }
  //strm.msg = Z_NULL;                 /* in case we return an error */

  const state = new InflateState();

  //if (state === Z_NULL) return Z_MEM_ERROR;
  //Tracev((stderr, "inflate: allocated\n"));
  strm.state = state;
  state.strm = strm;
  state.window = null/*Z_NULL*/;
  state.mode = HEAD;     /* to pass state test in inflateReset2() */
  const ret = inflateReset2(strm, windowBits);
  if (ret !== Z_OK) {
    strm.state = null/*Z_NULL*/;
  }
  return ret;
};


const inflateInit = (strm) => {

  return inflateInit2(strm, DEF_WBITS);
};


/*
 Return state with length and distance decoding tables and index sizes set to
 fixed code decoding.  Normally this returns fixed tables from inffixed.h.
 If BUILDFIXED is defined, then instead this routine builds the tables the
 first time it's called, and returns those tables the first time and
 thereafter.  This reduces the size of the code by about 2K bytes, in
 exchange for a little execution time.  However, BUILDFIXED should not be
 used for threaded applications, since the rewriting of the tables and virgin
 may not be thread-safe.
 */
let virgin = true;

let lenfix, distfix; // We have no pointers in JS, so keep tables separate


const fixedtables = (state) => {

  /* build fixed huffman tables if first call (may not be thread safe) */
  if (virgin) {
    lenfix = new Int32Array(512);
    distfix = new Int32Array(32);

    /* literal/length table */
    let sym = 0;
    while (sym < 144) { state.lens[sym++] = 8; }
    while (sym < 256) { state.lens[sym++] = 9; }
    while (sym < 280) { state.lens[sym++] = 7; }
    while (sym < 288) { state.lens[sym++] = 8; }

    inflate_table(LENS,  state.lens, 0, 288, lenfix,   0, state.work, { bits: 9 });

    /* distance table */
    sym = 0;
    while (sym < 32) { state.lens[sym++] = 5; }

    inflate_table(DISTS, state.lens, 0, 32,   distfix, 0, state.work, { bits: 5 });

    /* do this just once */
    virgin = false;
  }

  state.lencode = lenfix;
  state.lenbits = 9;
  state.distcode = distfix;
  state.distbits = 5;
};


/*
 Update the window with the last wsize (normally 32K) bytes written before
 returning.  If window does not exist yet, create it.  This is only called
 when a window is already in use, or when output has been written during this
 inflate call, but the end of the deflate stream has not been reached yet.
 It is also called to create a window for dictionary data when a dictionary
 is loaded.

 Providing output buffers larger than 32K to inflate() should provide a speed
 advantage, since only the last 32K of output is copied to the sliding window
 upon return from inflate(), and since all distances after the first 32K of
 output will fall in the output data, making match copies simpler and faster.
 The advantage may be dependent on the size of the processor's data caches.
 */
const updatewindow = (strm, src, end, copy) => {

  let dist;
  const state = strm.state;

  /* if it hasn't been done already, allocate space for the window */
  if (state.window === null) {
    state.wsize = 1 << state.wbits;
    state.wnext = 0;
    state.whave = 0;

    state.window = new Uint8Array(state.wsize);
  }

  /* copy state->wsize or less output bytes into the circular window */
  if (copy >= state.wsize) {
    state.window.set(src.subarray(end - state.wsize, end), 0);
    state.wnext = 0;
    state.whave = state.wsize;
  }
  else {
    dist = state.wsize - state.wnext;
    if (dist > copy) {
      dist = copy;
    }
    //zmemcpy(state->window + state->wnext, end - copy, dist);
    state.window.set(src.subarray(end - copy, end - copy + dist), state.wnext);
    copy -= dist;
    if (copy) {
      //zmemcpy(state->window, end - copy, copy);
      state.window.set(src.subarray(end - copy, end), 0);
      state.wnext = copy;
      state.whave = state.wsize;
    }
    else {
      state.wnext += dist;
      if (state.wnext === state.wsize) { state.wnext = 0; }
      if (state.whave < state.wsize) { state.whave += dist; }
    }
  }
  return 0;
};


const inflate = (strm, flush) => {

  let state;
  let input, output;          // input/output buffers
  let next;                   /* next input INDEX */
  let put;                    /* next output INDEX */
  let have, left;             /* available input and output */
  let hold;                   /* bit buffer */
  let bits;                   /* bits in bit buffer */
  let _in, _out;              /* save starting available input and output */
  let copy;                   /* number of stored or match bytes to copy */
  let from;                   /* where to copy match bytes from */
  let from_source;
  let here = 0;               /* current decoding table entry */
  let here_bits, here_op, here_val; // paked "here" denormalized (JS specific)
  //let last;                   /* parent table entry */
  let last_bits, last_op, last_val; // paked "last" denormalized (JS specific)
  let len;                    /* length to copy for repeats, bits to drop */
  let ret;                    /* return code */
  const hbuf = new Uint8Array(4);    /* buffer for gzip header crc calculation */
  let opts;

  let n; // temporary variable for NEED_BITS

  const order = /* permutation of code lengths */
    new Uint8Array([ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ]);


  if (inflateStateCheck(strm) || !strm.output ||
      (!strm.input && strm.avail_in !== 0)) {
    return Z_STREAM_ERROR;
  }

  state = strm.state;
  if (state.mode === TYPE) { state.mode = TYPEDO; }    /* skip check */


  //--- LOAD() ---
  put = strm.next_out;
  output = strm.output;
  left = strm.avail_out;
  next = strm.next_in;
  input = strm.input;
  have = strm.avail_in;
  hold = state.hold;
  bits = state.bits;
  //---

  _in = have;
  _out = left;
  ret = Z_OK;

  inf_leave: // goto emulation
  for (;;) {
    switch (state.mode) {
      case HEAD:
        if (state.wrap === 0) {
          state.mode = TYPEDO;
          break;
        }
        //=== NEEDBITS(16);
        while (bits < 16) {
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
        }
        //===//
        if ((state.wrap & 2) && hold === 0x8b1f) {  /* gzip header */
          if (state.wbits === 0) {
            state.wbits = 15;
          }
          state.check = 0/*crc32(0L, Z_NULL, 0)*/;
          //=== CRC2(state.check, hold);
          hbuf[0] = hold & 0xff;
          hbuf[1] = (hold >>> 8) & 0xff;
          state.check = crc32(state.check, hbuf, 2, 0);
          //===//

          //=== INITBITS();
          hold = 0;
          bits = 0;
          //===//
          state.mode = FLAGS;
          break;
        }
        if (state.head) {
          state.head.done = false;
        }
        if (!(state.wrap & 1) ||   /* check if zlib header allowed */
          (((hold & 0xff)/*BITS(8)*/ << 8) + (hold >> 8)) % 31) {
          strm.msg = 'incorrect header check';
          state.mode = BAD;
          break;
        }
        if ((hold & 0x0f)/*BITS(4)*/ !== Z_DEFLATED) {
          strm.msg = 'unknown compression method';
          state.mode = BAD;
          break;
        }
        //--- DROPBITS(4) ---//
        hold >>>= 4;
        bits -= 4;
        //---//
        len = (hold & 0x0f)/*BITS(4)*/ + 8;
        if (state.wbits === 0) {
          state.wbits = len;
        }
        if (len > 15 || len > state.wbits) {
          strm.msg = 'invalid window size';
          state.mode = BAD;
          break;
        }

        // !!! pako patch. Force use `options.windowBits` if passed.
        // Required to always use max window size by default.
        state.dmax = 1 << state.wbits;
        //state.dmax = 1 << len;

        state.flags = 0;               /* indicate zlib header */
        //Tracev((stderr, "inflate:   zlib header ok\n"));
        strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
        state.mode = hold & 0x200 ? DICTID : TYPE;
        //=== INITBITS();
        hold = 0;
        bits = 0;
        //===//
        break;
      case FLAGS:
        //=== NEEDBITS(16); */
        while (bits < 16) {
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
        }
        //===//
        state.flags = hold;
        if ((state.flags & 0xff) !== Z_DEFLATED) {
          strm.msg = 'unknown compression method';
          state.mode = BAD;
          break;
        }
        if (state.flags & 0xe000) {
          strm.msg = 'unknown header flags set';
          state.mode = BAD;
          break;
        }
        if (state.head) {
          state.head.text = ((hold >> 8) & 1);
        }
        if ((state.flags & 0x0200) && (state.wrap & 4)) {
          //=== CRC2(state.check, hold);
          hbuf[0] = hold & 0xff;
          hbuf[1] = (hold >>> 8) & 0xff;
          state.check = crc32(state.check, hbuf, 2, 0);
          //===//
        }
        //=== INITBITS();
        hold = 0;
        bits = 0;
        //===//
        state.mode = TIME;
        /* falls through */
      case TIME:
        //=== NEEDBITS(32); */
        while (bits < 32) {
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
        }
        //===//
        if (state.head) {
          state.head.time = hold;
        }
        if ((state.flags & 0x0200) && (state.wrap & 4)) {
          //=== CRC4(state.check, hold)
          hbuf[0] = hold & 0xff;
          hbuf[1] = (hold >>> 8) & 0xff;
          hbuf[2] = (hold >>> 16) & 0xff;
          hbuf[3] = (hold >>> 24) & 0xff;
          state.check = crc32(state.check, hbuf, 4, 0);
          //===
        }
        //=== INITBITS();
        hold = 0;
        bits = 0;
        //===//
        state.mode = OS;
        /* falls through */
      case OS:
        //=== NEEDBITS(16); */
        while (bits < 16) {
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
        }
        //===//
        if (state.head) {
          state.head.xflags = (hold & 0xff);
          state.head.os = (hold >> 8);
        }
        if ((state.flags & 0x0200) && (state.wrap & 4)) {
          //=== CRC2(state.check, hold);
          hbuf[0] = hold & 0xff;
          hbuf[1] = (hold >>> 8) & 0xff;
          state.check = crc32(state.check, hbuf, 2, 0);
          //===//
        }
        //=== INITBITS();
        hold = 0;
        bits = 0;
        //===//
        state.mode = EXLEN;
        /* falls through */
      case EXLEN:
        if (state.flags & 0x0400) {
          //=== NEEDBITS(16); */
          while (bits < 16) {
            if (have === 0) { break inf_leave; }
            have--;
            hold += input[next++] << bits;
            bits += 8;
          }
          //===//
          state.length = hold;
          if (state.head) {
            state.head.extra_len = hold;
          }
          if ((state.flags & 0x0200) && (state.wrap & 4)) {
            //=== CRC2(state.check, hold);
            hbuf[0] = hold & 0xff;
            hbuf[1] = (hold >>> 8) & 0xff;
            state.check = crc32(state.check, hbuf, 2, 0);
            //===//
          }
          //=== INITBITS();
          hold = 0;
          bits = 0;
          //===//
        }
        else if (state.head) {
          state.head.extra = null/*Z_NULL*/;
        }
        state.mode = EXTRA;
        /* falls through */
      case EXTRA:
        if (state.flags & 0x0400) {
          copy = state.length;
          if (copy > have) { copy = have; }
          if (copy) {
            if (state.head) {
              len = state.head.extra_len - state.length;
              if (!state.head.extra) {
                // Use untyped array for more convenient processing later
                state.head.extra = new Uint8Array(state.head.extra_len);
              }
              state.head.extra.set(
                input.subarray(
                  next,
                  // extra field is limited to 65536 bytes
                  // - no need for additional size check
                  next + copy
                ),
                /*len + copy > state.head.extra_max - len ? state.head.extra_max : copy,*/
                len
              );
              //zmemcpy(state.head.extra + len, next,
              //        len + copy > state.head.extra_max ?
              //        state.head.extra_max - len : copy);
            }
            if ((state.flags & 0x0200) && (state.wrap & 4)) {
              state.check = crc32(state.check, input, copy, next);
            }
            have -= copy;
            next += copy;
            state.length -= copy;
          }
          if (state.length) { break inf_leave; }
        }
        state.length = 0;
        state.mode = NAME;
        /* falls through */
      case NAME:
        if (state.flags & 0x0800) {
          if (have === 0) { break inf_leave; }
          copy = 0;
          do {
            // TODO: 2 or 1 bytes?
            len = input[next + copy++];
            /* use constant limit because in js we should not preallocate memory */
            if (state.head && len &&
                (state.length < 65536 /*state.head.name_max*/)) {
              state.head.name += String.fromCharCode(len);
            }
          } while (len && copy < have);

          if ((state.flags & 0x0200) && (state.wrap & 4)) {
            state.check = crc32(state.check, input, copy, next);
          }
          have -= copy;
          next += copy;
          if (len) { break inf_leave; }
        }
        else if (state.head) {
          state.head.name = null;
        }
        state.length = 0;
        state.mode = COMMENT;
        /* falls through */
      case COMMENT:
        if (state.flags & 0x1000) {
          if (have === 0) { break inf_leave; }
          copy = 0;
          do {
            len = input[next + copy++];
            /* use constant limit because in js we should not preallocate memory */
            if (state.head && len &&
                (state.length < 65536 /*state.head.comm_max*/)) {
              state.head.comment += String.fromCharCode(len);
            }
          } while (len && copy < have);
          if ((state.flags & 0x0200) && (state.wrap & 4)) {
            state.check = crc32(state.check, input, copy, next);
          }
          have -= copy;
          next += copy;
          if (len) { break inf_leave; }
        }
        else if (state.head) {
          state.head.comment = null;
        }
        state.mode = HCRC;
        /* falls through */
      case HCRC:
        if (state.flags & 0x0200) {
          //=== NEEDBITS(16); */
          while (bits < 16) {
            if (have === 0) { break inf_leave; }
            have--;
            hold += input[next++] << bits;
            bits += 8;
          }
          //===//
          if ((state.wrap & 4) && hold !== (state.check & 0xffff)) {
            strm.msg = 'header crc mismatch';
            state.mode = BAD;
            break;
          }
          //=== INITBITS();
          hold = 0;
          bits = 0;
          //===//
        }
        if (state.head) {
          state.head.hcrc = ((state.flags >> 9) & 1);
          state.head.done = true;
        }
        strm.adler = state.check = 0;
        state.mode = TYPE;
        break;
      case DICTID:
        //=== NEEDBITS(32); */
        while (bits < 32) {
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
        }
        //===//
        strm.adler = state.check = zswap32(hold);
        //=== INITBITS();
        hold = 0;
        bits = 0;
        //===//
        state.mode = DICT;
        /* falls through */
      case DICT:
        if (state.havedict === 0) {
          //--- RESTORE() ---
          strm.next_out = put;
          strm.avail_out = left;
          strm.next_in = next;
          strm.avail_in = have;
          state.hold = hold;
          state.bits = bits;
          //---
          return Z_NEED_DICT;
        }
        strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
        state.mode = TYPE;
        /* falls through */
      case TYPE:
        if (flush === Z_BLOCK || flush === Z_TREES) { break inf_leave; }
        /* falls through */
      case TYPEDO:
        if (state.last) {
          //--- BYTEBITS() ---//
          hold >>>= bits & 7;
          bits -= bits & 7;
          //---//
          state.mode = CHECK;
          break;
        }
        //=== NEEDBITS(3); */
        while (bits < 3) {
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
        }
        //===//
        state.last = (hold & 0x01)/*BITS(1)*/;
        //--- DROPBITS(1) ---//
        hold >>>= 1;
        bits -= 1;
        //---//

        switch ((hold & 0x03)/*BITS(2)*/) {
          case 0:                             /* stored block */
            //Tracev((stderr, "inflate:     stored block%s\n",
            //        state.last ? " (last)" : ""));
            state.mode = STORED;
            break;
          case 1:                             /* fixed block */
            fixedtables(state);
            //Tracev((stderr, "inflate:     fixed codes block%s\n",
            //        state.last ? " (last)" : ""));
            state.mode = LEN_;             /* decode codes */
            if (flush === Z_TREES) {
              //--- DROPBITS(2) ---//
              hold >>>= 2;
              bits -= 2;
              //---//
              break inf_leave;
            }
            break;
          case 2:                             /* dynamic block */
            //Tracev((stderr, "inflate:     dynamic codes block%s\n",
            //        state.last ? " (last)" : ""));
            state.mode = TABLE;
            break;
          case 3:
            strm.msg = 'invalid block type';
            state.mode = BAD;
        }
        //--- DROPBITS(2) ---//
        hold >>>= 2;
        bits -= 2;
        //---//
        break;
      case STORED:
        //--- BYTEBITS() ---// /* go to byte boundary */
        hold >>>= bits & 7;
        bits -= bits & 7;
        //---//
        //=== NEEDBITS(32); */
        while (bits < 32) {
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
        }
        //===//
        if ((hold & 0xffff) !== ((hold >>> 16) ^ 0xffff)) {
          strm.msg = 'invalid stored block lengths';
          state.mode = BAD;
          break;
        }
        state.length = hold & 0xffff;
        //Tracev((stderr, "inflate:       stored length %u\n",
        //        state.length));
        //=== INITBITS();
        hold = 0;
        bits = 0;
        //===//
        state.mode = COPY_;
        if (flush === Z_TREES) { break inf_leave; }
        /* falls through */
      case COPY_:
        state.mode = COPY;
        /* falls through */
      case COPY:
        copy = state.length;
        if (copy) {
          if (copy > have) { copy = have; }
          if (copy > left) { copy = left; }
          if (copy === 0) { break inf_leave; }
          //--- zmemcpy(put, next, copy); ---
          output.set(input.subarray(next, next + copy), put);
          //---//
          have -= copy;
          next += copy;
          left -= copy;
          put += copy;
          state.length -= copy;
          break;
        }
        //Tracev((stderr, "inflate:       stored end\n"));
        state.mode = TYPE;
        break;
      case TABLE:
        //=== NEEDBITS(14); */
        while (bits < 14) {
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
        }
        //===//
        state.nlen = (hold & 0x1f)/*BITS(5)*/ + 257;
        //--- DROPBITS(5) ---//
        hold >>>= 5;
        bits -= 5;
        //---//
        state.ndist = (hold & 0x1f)/*BITS(5)*/ + 1;
        //--- DROPBITS(5) ---//
        hold >>>= 5;
        bits -= 5;
        //---//
        state.ncode = (hold & 0x0f)/*BITS(4)*/ + 4;
        //--- DROPBITS(4) ---//
        hold >>>= 4;
        bits -= 4;
        //---//
//#ifndef PKZIP_BUG_WORKAROUND
        if (state.nlen > 286 || state.ndist > 30) {
          strm.msg = 'too many length or distance symbols';
          state.mode = BAD;
          break;
        }
//#endif
        //Tracev((stderr, "inflate:       table sizes ok\n"));
        state.have = 0;
        state.mode = LENLENS;
        /* falls through */
      case LENLENS:
        while (state.have < state.ncode) {
          //=== NEEDBITS(3);
          while (bits < 3) {
            if (have === 0) { break inf_leave; }
            have--;
            hold += input[next++] << bits;
            bits += 8;
          }
          //===//
          state.lens[order[state.have++]] = (hold & 0x07);//BITS(3);
          //--- DROPBITS(3) ---//
          hold >>>= 3;
          bits -= 3;
          //---//
        }
        while (state.have < 19) {
          state.lens[order[state.have++]] = 0;
        }
        // We have separate tables & no pointers. 2 commented lines below not needed.
        //state.next = state.codes;
        //state.lencode = state.next;
        // Switch to use dynamic table
        state.lencode = state.lendyn;
        state.lenbits = 7;

        opts = { bits: state.lenbits };
        ret = inflate_table(CODES, state.lens, 0, 19, state.lencode, 0, state.work, opts);
        state.lenbits = opts.bits;

        if (ret) {
          strm.msg = 'invalid code lengths set';
          state.mode = BAD;
          break;
        }
        //Tracev((stderr, "inflate:       code lengths ok\n"));
        state.have = 0;
        state.mode = CODELENS;
        /* falls through */
      case CODELENS:
        while (state.have < state.nlen + state.ndist) {
          for (;;) {
            here = state.lencode[hold & ((1 << state.lenbits) - 1)];/*BITS(state.lenbits)*/
            here_bits = here >>> 24;
            here_op = (here >>> 16) & 0xff;
            here_val = here & 0xffff;

            if ((here_bits) <= bits) { break; }
            //--- PULLBYTE() ---//
            if (have === 0) { break inf_leave; }
            have--;
            hold += input[next++] << bits;
            bits += 8;
            //---//
          }
          if (here_val < 16) {
            //--- DROPBITS(here.bits) ---//
            hold >>>= here_bits;
            bits -= here_bits;
            //---//
            state.lens[state.have++] = here_val;
          }
          else {
            if (here_val === 16) {
              //=== NEEDBITS(here.bits + 2);
              n = here_bits + 2;
              while (bits < n) {
                if (have === 0) { break inf_leave; }
                have--;
                hold += input[next++] << bits;
                bits += 8;
              }
              //===//
              //--- DROPBITS(here.bits) ---//
              hold >>>= here_bits;
              bits -= here_bits;
              //---//
              if (state.have === 0) {
                strm.msg = 'invalid bit length repeat';
                state.mode = BAD;
                break;
              }
              len = state.lens[state.have - 1];
              copy = 3 + (hold & 0x03);//BITS(2);
              //--- DROPBITS(2) ---//
              hold >>>= 2;
              bits -= 2;
              //---//
            }
            else if (here_val === 17) {
              //=== NEEDBITS(here.bits + 3);
              n = here_bits + 3;
              while (bits < n) {
                if (have === 0) { break inf_leave; }
                have--;
                hold += input[next++] << bits;
                bits += 8;
              }
              //===//
              //--- DROPBITS(here.bits) ---//
              hold >>>= here_bits;
              bits -= here_bits;
              //---//
              len = 0;
              copy = 3 + (hold & 0x07);//BITS(3);
              //--- DROPBITS(3) ---//
              hold >>>= 3;
              bits -= 3;
              //---//
            }
            else {
              //=== NEEDBITS(here.bits + 7);
              n = here_bits + 7;
              while (bits < n) {
                if (have === 0) { break inf_leave; }
                have--;
                hold += input[next++] << bits;
                bits += 8;
              }
              //===//
              //--- DROPBITS(here.bits) ---//
              hold >>>= here_bits;
              bits -= here_bits;
              //---//
              len = 0;
              copy = 11 + (hold & 0x7f);//BITS(7);
              //--- DROPBITS(7) ---//
              hold >>>= 7;
              bits -= 7;
              //---//
            }
            if (state.have + copy > state.nlen + state.ndist) {
              strm.msg = 'invalid bit length repeat';
              state.mode = BAD;
              break;
            }
            while (copy--) {
              state.lens[state.have++] = len;
            }
          }
        }

        /* handle error breaks in while */
        if (state.mode === BAD) { break; }

        /* check for end-of-block code (better have one) */
        if (state.lens[256] === 0) {
          strm.msg = 'invalid code -- missing end-of-block';
          state.mode = BAD;
          break;
        }

        /* build code tables -- note: do not change the lenbits or distbits
           values here (9 and 6) without reading the comments in inftrees.h
           concerning the ENOUGH constants, which depend on those values */
        state.lenbits = 9;

        opts = { bits: state.lenbits };
        ret = inflate_table(LENS, state.lens, 0, state.nlen, state.lencode, 0, state.work, opts);
        // We have separate tables & no pointers. 2 commented lines below not needed.
        // state.next_index = opts.table_index;
        state.lenbits = opts.bits;
        // state.lencode = state.next;

        if (ret) {
          strm.msg = 'invalid literal/lengths set';
          state.mode = BAD;
          break;
        }

        state.distbits = 6;
        //state.distcode.copy(state.codes);
        // Switch to use dynamic table
        state.distcode = state.distdyn;
        opts = { bits: state.distbits };
        ret = inflate_table(DISTS, state.lens, state.nlen, state.ndist, state.distcode, 0, state.work, opts);
        // We have separate tables & no pointers. 2 commented lines below not needed.
        // state.next_index = opts.table_index;
        state.distbits = opts.bits;
        // state.distcode = state.next;

        if (ret) {
          strm.msg = 'invalid distances set';
          state.mode = BAD;
          break;
        }
        //Tracev((stderr, 'inflate:       codes ok\n'));
        state.mode = LEN_;
        if (flush === Z_TREES) { break inf_leave; }
        /* falls through */
      case LEN_:
        state.mode = LEN;
        /* falls through */
      case LEN:
        if (have >= 6 && left >= 258) {
          //--- RESTORE() ---
          strm.next_out = put;
          strm.avail_out = left;
          strm.next_in = next;
          strm.avail_in = have;
          state.hold = hold;
          state.bits = bits;
          //---
          inflate_fast(strm, _out);
          //--- LOAD() ---
          put = strm.next_out;
          output = strm.output;
          left = strm.avail_out;
          next = strm.next_in;
          input = strm.input;
          have = strm.avail_in;
          hold = state.hold;
          bits = state.bits;
          //---

          if (state.mode === TYPE) {
            state.back = -1;
          }
          break;
        }
        state.back = 0;
        for (;;) {
          here = state.lencode[hold & ((1 << state.lenbits) - 1)];  /*BITS(state.lenbits)*/
          here_bits = here >>> 24;
          here_op = (here >>> 16) & 0xff;
          here_val = here & 0xffff;

          if (here_bits <= bits) { break; }
          //--- PULLBYTE() ---//
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
          //---//
        }
        if (here_op && (here_op & 0xf0) === 0) {
          last_bits = here_bits;
          last_op = here_op;
          last_val = here_val;
          for (;;) {
            here = state.lencode[last_val +
                    ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
            here_bits = here >>> 24;
            here_op = (here >>> 16) & 0xff;
            here_val = here & 0xffff;

            if ((last_bits + here_bits) <= bits) { break; }
            //--- PULLBYTE() ---//
            if (have === 0) { break inf_leave; }
            have--;
            hold += input[next++] << bits;
            bits += 8;
            //---//
          }
          //--- DROPBITS(last.bits) ---//
          hold >>>= last_bits;
          bits -= last_bits;
          //---//
          state.back += last_bits;
        }
        //--- DROPBITS(here.bits) ---//
        hold >>>= here_bits;
        bits -= here_bits;
        //---//
        state.back += here_bits;
        state.length = here_val;
        if (here_op === 0) {
          //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
          //        "inflate:         literal '%c'\n" :
          //        "inflate:         literal 0x%02x\n", here.val));
          state.mode = LIT;
          break;
        }
        if (here_op & 32) {
          //Tracevv((stderr, "inflate:         end of block\n"));
          state.back = -1;
          state.mode = TYPE;
          break;
        }
        if (here_op & 64) {
          strm.msg = 'invalid literal/length code';
          state.mode = BAD;
          break;
        }
        state.extra = here_op & 15;
        state.mode = LENEXT;
        /* falls through */
      case LENEXT:
        if (state.extra) {
          //=== NEEDBITS(state.extra);
          n = state.extra;
          while (bits < n) {
            if (have === 0) { break inf_leave; }
            have--;
            hold += input[next++] << bits;
            bits += 8;
          }
          //===//
          state.length += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
          //--- DROPBITS(state.extra) ---//
          hold >>>= state.extra;
          bits -= state.extra;
          //---//
          state.back += state.extra;
        }
        //Tracevv((stderr, "inflate:         length %u\n", state.length));
        state.was = state.length;
        state.mode = DIST;
        /* falls through */
      case DIST:
        for (;;) {
          here = state.distcode[hold & ((1 << state.distbits) - 1)];/*BITS(state.distbits)*/
          here_bits = here >>> 24;
          here_op = (here >>> 16) & 0xff;
          here_val = here & 0xffff;

          if ((here_bits) <= bits) { break; }
          //--- PULLBYTE() ---//
          if (have === 0) { break inf_leave; }
          have--;
          hold += input[next++] << bits;
          bits += 8;
          //---//
        }
        if ((here_op & 0xf0) === 0) {
          last_bits = here_bits;
          last_op = here_op;
          last_val = here_val;
          for (;;) {
            here = state.distcode[last_val +
                    ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
            here_bits = here >>> 24;
            here_op = (here >>> 16) & 0xff;
            here_val = here & 0xffff;

            if ((last_bits + here_bits) <= bits) { break; }
            //--- PULLBYTE() ---//
            if (have === 0) { break inf_leave; }
            have--;
            hold += input[next++] << bits;
            bits += 8;
            //---//
          }
          //--- DROPBITS(last.bits) ---//
          hold >>>= last_bits;
          bits -= last_bits;
          //---//
          state.back += last_bits;
        }
        //--- DROPBITS(here.bits) ---//
        hold >>>= here_bits;
        bits -= here_bits;
        //---//
        state.back += here_bits;
        if (here_op & 64) {
          strm.msg = 'invalid distance code';
          state.mode = BAD;
          break;
        }
        state.offset = here_val;
        state.extra = (here_op) & 15;
        state.mode = DISTEXT;
        /* falls through */
      case DISTEXT:
        if (state.extra) {
          //=== NEEDBITS(state.extra);
          n = state.extra;
          while (bits < n) {
            if (have === 0) { break inf_leave; }
            have--;
            hold += input[next++] << bits;
            bits += 8;
          }
          //===//
          state.offset += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
          //--- DROPBITS(state.extra) ---//
          hold >>>= state.extra;
          bits -= state.extra;
          //---//
          state.back += state.extra;
        }
//#ifdef INFLATE_STRICT
        if (state.offset > state.dmax) {
          strm.msg = 'invalid distance too far back';
          state.mode = BAD;
          break;
        }
//#endif
        //Tracevv((stderr, "inflate:         distance %u\n", state.offset));
        state.mode = MATCH;
        /* falls through */
      case MATCH:
        if (left === 0) { break inf_leave; }
        copy = _out - left;
        if (state.offset > copy) {         /* copy from window */
          copy = state.offset - copy;
          if (copy > state.whave) {
            if (state.sane) {
              strm.msg = 'invalid distance too far back';
              state.mode = BAD;
              break;
            }
// (!) This block is disabled in zlib defaults,
// don't enable it for binary compatibility
//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
//          Trace((stderr, "inflate.c too far\n"));
//          copy -= state.whave;
//          if (copy > state.length) { copy = state.length; }
//          if (copy > left) { copy = left; }
//          left -= copy;
//          state.length -= copy;
//          do {
//            output[put++] = 0;
//          } while (--copy);
//          if (state.length === 0) { state.mode = LEN; }
//          break;
//#endif
          }
          if (copy > state.wnext) {
            copy -= state.wnext;
            from = state.wsize - copy;
          }
          else {
            from = state.wnext - copy;
          }
          if (copy > state.length) { copy = state.length; }
          from_source = state.window;
        }
        else {                              /* copy from output */
          from_source = output;
          from = put - state.offset;
          copy = state.length;
        }
        if (copy > left) { copy = left; }
        left -= copy;
        state.length -= copy;
        do {
          output[put++] = from_source[from++];
        } while (--copy);
        if (state.length === 0) { state.mode = LEN; }
        break;
      case LIT:
        if (left === 0) { break inf_leave; }
        output[put++] = state.length;
        left--;
        state.mode = LEN;
        break;
      case CHECK:
        if (state.wrap) {
          //=== NEEDBITS(32);
          while (bits < 32) {
            if (have === 0) { break inf_leave; }
            have--;
            // Use '|' instead of '+' to make sure that result is signed
            hold |= input[next++] << bits;
            bits += 8;
          }
          //===//
          _out -= left;
          strm.total_out += _out;
          state.total += _out;
          if ((state.wrap & 4) && _out) {
            strm.adler = state.check =
                /*UPDATE_CHECK(state.check, put - _out, _out);*/
                (state.flags ? crc32(state.check, output, _out, put - _out) : adler32(state.check, output, _out, put - _out));

          }
          _out = left;
          // NB: crc32 stored as signed 32-bit int, zswap32 returns signed too
          if ((state.wrap & 4) && (state.flags ? hold : zswap32(hold)) !== state.check) {
            strm.msg = 'incorrect data check';
            state.mode = BAD;
            break;
          }
          //=== INITBITS();
          hold = 0;
          bits = 0;
          //===//
          //Tracev((stderr, "inflate:   check matches trailer\n"));
        }
        state.mode = LENGTH;
        /* falls through */
      case LENGTH:
        if (state.wrap && state.flags) {
          //=== NEEDBITS(32);
          while (bits < 32) {
            if (have === 0) { break inf_leave; }
            have--;
            hold += input[next++] << bits;
            bits += 8;
          }
          //===//
          if ((state.wrap & 4) && hold !== (state.total & 0xffffffff)) {
            strm.msg = 'incorrect length check';
            state.mode = BAD;
            break;
          }
          //=== INITBITS();
          hold = 0;
          bits = 0;
          //===//
          //Tracev((stderr, "inflate:   length matches trailer\n"));
        }
        state.mode = DONE;
        /* falls through */
      case DONE:
        ret = Z_STREAM_END;
        break inf_leave;
      case BAD:
        ret = Z_DATA_ERROR;
        break inf_leave;
      case MEM:
        return Z_MEM_ERROR;
      case SYNC:
        /* falls through */
      default:
        return Z_STREAM_ERROR;
    }
  }

  // inf_leave <- here is real place for "goto inf_leave", emulated via "break inf_leave"

  /*
     Return from inflate(), updating the total counts and the check value.
     If there was no progress during the inflate() call, return a buffer
     error.  Call updatewindow() to create and/or update the window state.
     Note: a memory error from inflate() is non-recoverable.
   */

  //--- RESTORE() ---
  strm.next_out = put;
  strm.avail_out = left;
  strm.next_in = next;
  strm.avail_in = have;
  state.hold = hold;
  state.bits = bits;
  //---

  if (state.wsize || (_out !== strm.avail_out && state.mode < BAD &&
                      (state.mode < CHECK || flush !== Z_FINISH))) {
    if (updatewindow(strm, strm.output, strm.next_out, _out - strm.avail_out)) {
      state.mode = MEM;
      return Z_MEM_ERROR;
    }
  }
  _in -= strm.avail_in;
  _out -= strm.avail_out;
  strm.total_in += _in;
  strm.total_out += _out;
  state.total += _out;
  if ((state.wrap & 4) && _out) {
    strm.adler = state.check = /*UPDATE_CHECK(state.check, strm.next_out - _out, _out);*/
      (state.flags ? crc32(state.check, output, _out, strm.next_out - _out) : adler32(state.check, output, _out, strm.next_out - _out));
  }
  strm.data_type = state.bits + (state.last ? 64 : 0) +
                    (state.mode === TYPE ? 128 : 0) +
                    (state.mode === LEN_ || state.mode === COPY_ ? 256 : 0);
  if (((_in === 0 && _out === 0) || flush === Z_FINISH) && ret === Z_OK) {
    ret = Z_BUF_ERROR;
  }
  return ret;
};


const inflateEnd = (strm) => {

  if (inflateStateCheck(strm)) {
    return Z_STREAM_ERROR;
  }

  let state = strm.state;
  if (state.window) {
    state.window = null;
  }
  strm.state = null;
  return Z_OK;
};


const inflateGetHeader = (strm, head) => {

  /* check state */
  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR; }
  const state = strm.state;
  if ((state.wrap & 2) === 0) { return Z_STREAM_ERROR; }

  /* save header structure */
  state.head = head;
  head.done = false;
  return Z_OK;
};


const inflateSetDictionary = (strm, dictionary) => {
  const dictLength = dictionary.length;

  let state;
  let dictid;
  let ret;

  /* check state */
  if (inflateStateCheck(strm)) { return Z_STREAM_ERROR; }
  state = strm.state;

  if (state.wrap !== 0 && state.mode !== DICT) {
    return Z_STREAM_ERROR;
  }

  /* check for correct dictionary identifier */
  if (state.mode === DICT) {
    dictid = 1; /* adler32(0, null, 0)*/
    /* dictid = adler32(dictid, dictionary, dictLength); */
    dictid = adler32(dictid, dictionary, dictLength, 0);
    if (dictid !== state.check) {
      return Z_DATA_ERROR;
    }
  }
  /* copy dictionary to window using updatewindow(), which will amend the
   existing dictionary if appropriate */
  ret = updatewindow(strm, dictionary, dictLength, dictLength);
  if (ret) {
    state.mode = MEM;
    return Z_MEM_ERROR;
  }
  state.havedict = 1;
  // Tracev((stderr, "inflate:   dictionary set\n"));
  return Z_OK;
};


module.exports.inflateReset = inflateReset;
module.exports.inflateReset2 = inflateReset2;
module.exports.inflateResetKeep = inflateResetKeep;
module.exports.inflateInit = inflateInit;
module.exports.inflateInit2 = inflateInit2;
module.exports.inflate = inflate;
module.exports.inflateEnd = inflateEnd;
module.exports.inflateGetHeader = inflateGetHeader;
module.exports.inflateSetDictionary = inflateSetDictionary;
module.exports.inflateInfo = 'pako inflate (from Nodeca project)';

/* Not implemented
module.exports.inflateCodesUsed = inflateCodesUsed;
module.exports.inflateCopy = inflateCopy;
module.exports.inflateGetDictionary = inflateGetDictionary;
module.exports.inflateMark = inflateMark;
module.exports.inflatePrime = inflatePrime;
module.exports.inflateSync = inflateSync;
module.exports.inflateSyncPoint = inflateSyncPoint;
module.exports.inflateUndermine = inflateUndermine;
module.exports.inflateValidate = inflateValidate;
*/

},{"./adler32":11,"./constants":12,"./crc32":13,"./inffast":16,"./inftrees":18}],18:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

const MAXBITS = 15;
const ENOUGH_LENS = 852;
const ENOUGH_DISTS = 592;
//const ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS);

const CODES = 0;
const LENS = 1;
const DISTS = 2;

const lbase = new Uint16Array([ /* Length codes 257..285 base */
  3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
  35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
]);

const lext = new Uint8Array([ /* Length codes 257..285 extra */
  16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
  19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78
]);

const dbase = new Uint16Array([ /* Distance codes 0..29 base */
  1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
  257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
  8193, 12289, 16385, 24577, 0, 0
]);

const dext = new Uint8Array([ /* Distance codes 0..29 extra */
  16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
  23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
  28, 28, 29, 29, 64, 64
]);

const inflate_table = (type, lens, lens_index, codes, table, table_index, work, opts) =>
{
  const bits = opts.bits;
      //here = opts.here; /* table entry for duplication */

  let len = 0;               /* a code's length in bits */
  let sym = 0;               /* index of code symbols */
  let min = 0, max = 0;          /* minimum and maximum code lengths */
  let root = 0;              /* number of index bits for root table */
  let curr = 0;              /* number of index bits for current table */
  let drop = 0;              /* code bits to drop for sub-table */
  let left = 0;                   /* number of prefix codes available */
  let used = 0;              /* code entries in table used */
  let huff = 0;              /* Huffman code */
  let incr;              /* for incrementing code, index */
  let fill;              /* index for replicating entries */
  let low;               /* low bits for current root entry */
  let mask;              /* mask for low root bits */
  let next;             /* next available space in table */
  let base = null;     /* base value table to use */
//  let shoextra;    /* extra bits table to use */
  let match;                  /* use base and extra for symbol >= match */
  const count = new Uint16Array(MAXBITS + 1); //[MAXBITS+1];    /* number of codes of each length */
  const offs = new Uint16Array(MAXBITS + 1); //[MAXBITS+1];     /* offsets in table for each length */
  let extra = null;

  let here_bits, here_op, here_val;

  /*
   Process a set of code lengths to create a canonical Huffman code.  The
   code lengths are lens[0..codes-1].  Each length corresponds to the
   symbols 0..codes-1.  The Huffman code is generated by first sorting the
   symbols by length from short to long, and retaining the symbol order
   for codes with equal lengths.  Then the code starts with all zero bits
   for the first code of the shortest length, and the codes are integer
   increments for the same length, and zeros are appended as the length
   increases.  For the deflate format, these bits are stored backwards
   from their more natural integer increment ordering, and so when the
   decoding tables are built in the large loop below, the integer codes
   are incremented backwards.

   This routine assumes, but does not check, that all of the entries in
   lens[] are in the range 0..MAXBITS.  The caller must assure this.
   1..MAXBITS is interpreted as that code length.  zero means that that
   symbol does not occur in this code.

   The codes are sorted by computing a count of codes for each length,
   creating from that a table of starting indices for each length in the
   sorted table, and then entering the symbols in order in the sorted
   table.  The sorted table is work[], with that space being provided by
   the caller.

   The length counts are used for other purposes as well, i.e. finding
   the minimum and maximum length codes, determining if there are any
   codes at all, checking for a valid set of lengths, and looking ahead
   at length counts to determine sub-table sizes when building the
   decoding tables.
   */

  /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
  for (len = 0; len <= MAXBITS; len++) {
    count[len] = 0;
  }
  for (sym = 0; sym < codes; sym++) {
    count[lens[lens_index + sym]]++;
  }

  /* bound code lengths, force root to be within code lengths */
  root = bits;
  for (max = MAXBITS; max >= 1; max--) {
    if (count[max] !== 0) { break; }
  }
  if (root > max) {
    root = max;
  }
  if (max === 0) {                     /* no symbols to code at all */
    //table.op[opts.table_index] = 64;  //here.op = (var char)64;    /* invalid code marker */
    //table.bits[opts.table_index] = 1;   //here.bits = (var char)1;
    //table.val[opts.table_index++] = 0;   //here.val = (var short)0;
    table[table_index++] = (1 << 24) | (64 << 16) | 0;


    //table.op[opts.table_index] = 64;
    //table.bits[opts.table_index] = 1;
    //table.val[opts.table_index++] = 0;
    table[table_index++] = (1 << 24) | (64 << 16) | 0;

    opts.bits = 1;
    return 0;     /* no symbols, but wait for decoding to report error */
  }
  for (min = 1; min < max; min++) {
    if (count[min] !== 0) { break; }
  }
  if (root < min) {
    root = min;
  }

  /* check for an over-subscribed or incomplete set of lengths */
  left = 1;
  for (len = 1; len <= MAXBITS; len++) {
    left <<= 1;
    left -= count[len];
    if (left < 0) {
      return -1;
    }        /* over-subscribed */
  }
  if (left > 0 && (type === CODES || max !== 1)) {
    return -1;                      /* incomplete set */
  }

  /* generate offsets into symbol table for each length for sorting */
  offs[1] = 0;
  for (len = 1; len < MAXBITS; len++) {
    offs[len + 1] = offs[len] + count[len];
  }

  /* sort symbols by length, by symbol order within each length */
  for (sym = 0; sym < codes; sym++) {
    if (lens[lens_index + sym] !== 0) {
      work[offs[lens[lens_index + sym]]++] = sym;
    }
  }

  /*
   Create and fill in decoding tables.  In this loop, the table being
   filled is at next and has curr index bits.  The code being used is huff
   with length len.  That code is converted to an index by dropping drop
   bits off of the bottom.  For codes where len is less than drop + curr,
   those top drop + curr - len bits are incremented through all values to
   fill the table with replicated entries.

   root is the number of index bits for the root table.  When len exceeds
   root, sub-tables are created pointed to by the root entry with an index
   of the low root bits of huff.  This is saved in low to check for when a
   new sub-table should be started.  drop is zero when the root table is
   being filled, and drop is root when sub-tables are being filled.

   When a new sub-table is needed, it is necessary to look ahead in the
   code lengths to determine what size sub-table is needed.  The length
   counts are used for this, and so count[] is decremented as codes are
   entered in the tables.

   used keeps track of how many table entries have been allocated from the
   provided *table space.  It is checked for LENS and DIST tables against
   the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
   the initial root table size constants.  See the comments in inftrees.h
   for more information.

   sym increments through all symbols, and the loop terminates when
   all codes of length max, i.e. all codes, have been processed.  This
   routine permits incomplete codes, so another loop after this one fills
   in the rest of the decoding tables with invalid code markers.
   */

  /* set up for code type */
  // poor man optimization - use if-else instead of switch,
  // to avoid deopts in old v8
  if (type === CODES) {
    base = extra = work;    /* dummy value--not used */
    match = 20;

  } else if (type === LENS) {
    base = lbase;
    extra = lext;
    match = 257;

  } else {                    /* DISTS */
    base = dbase;
    extra = dext;
    match = 0;
  }

  /* initialize opts for loop */
  huff = 0;                   /* starting code */
  sym = 0;                    /* starting code symbol */
  len = min;                  /* starting code length */
  next = table_index;              /* current table to fill in */
  curr = root;                /* current table index bits */
  drop = 0;                   /* current bits to drop from code for index */
  low = -1;                   /* trigger new sub-table when len > root */
  used = 1 << root;          /* use root table entries */
  mask = used - 1;            /* mask for comparing low */

  /* check available table space */
  if ((type === LENS && used > ENOUGH_LENS) ||
    (type === DISTS && used > ENOUGH_DISTS)) {
    return 1;
  }

  /* process all codes and make table entries */
  for (;;) {
    /* create table entry */
    here_bits = len - drop;
    if (work[sym] + 1 < match) {
      here_op = 0;
      here_val = work[sym];
    }
    else if (work[sym] >= match) {
      here_op = extra[work[sym] - match];
      here_val = base[work[sym] - match];
    }
    else {
      here_op = 32 + 64;         /* end of block */
      here_val = 0;
    }

    /* replicate for those indices with low len bits equal to huff */
    incr = 1 << (len - drop);
    fill = 1 << curr;
    min = fill;                 /* save offset to next table */
    do {
      fill -= incr;
      table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0;
    } while (fill !== 0);

    /* backwards increment the len-bit code huff */
    incr = 1 << (len - 1);
    while (huff & incr) {
      incr >>= 1;
    }
    if (incr !== 0) {
      huff &= incr - 1;
      huff += incr;
    } else {
      huff = 0;
    }

    /* go to next symbol, update count, len */
    sym++;
    if (--count[len] === 0) {
      if (len === max) { break; }
      len = lens[lens_index + work[sym]];
    }

    /* create new sub-table if needed */
    if (len > root && (huff & mask) !== low) {
      /* if first time, transition to sub-tables */
      if (drop === 0) {
        drop = root;
      }

      /* increment past last table */
      next += min;            /* here min is 1 << curr */

      /* determine length of next table */
      curr = len - drop;
      left = 1 << curr;
      while (curr + drop < max) {
        left -= count[curr + drop];
        if (left <= 0) { break; }
        curr++;
        left <<= 1;
      }

      /* check for enough space */
      used += 1 << curr;
      if ((type === LENS && used > ENOUGH_LENS) ||
        (type === DISTS && used > ENOUGH_DISTS)) {
        return 1;
      }

      /* point entry in root table to sub-table */
      low = huff & mask;
      /*table.op[low] = curr;
      table.bits[low] = root;
      table.val[low] = next - opts.table_index;*/
      table[low] = (root << 24) | (curr << 16) | (next - table_index) |0;
    }
  }

  /* fill in remaining table entry if code is incomplete (guaranteed to have
   at most one remaining entry, since if the code is incomplete, the
   maximum code length that was allowed to get this far is one bit) */
  if (huff !== 0) {
    //table.op[next + huff] = 64;            /* invalid code marker */
    //table.bits[next + huff] = len - drop;
    //table.val[next + huff] = 0;
    table[next + huff] = ((len - drop) << 24) | (64 << 16) |0;
  }

  /* set return parameters */
  //opts.table_index += used;
  opts.bits = root;
  return 0;
};


module.exports = inflate_table;

},{}],19:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

module.exports = {
  2:      'need dictionary',     /* Z_NEED_DICT       2  */
  1:      'stream end',          /* Z_STREAM_END      1  */
  0:      '',                    /* Z_OK              0  */
  '-1':   'file error',          /* Z_ERRNO         (-1) */
  '-2':   'stream error',        /* Z_STREAM_ERROR  (-2) */
  '-3':   'data error',          /* Z_DATA_ERROR    (-3) */
  '-4':   'insufficient memory', /* Z_MEM_ERROR     (-4) */
  '-5':   'buffer error',        /* Z_BUF_ERROR     (-5) */
  '-6':   'incompatible version' /* Z_VERSION_ERROR (-6) */
};

},{}],20:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

/* eslint-disable space-unary-ops */

/* Public constants ==========================================================*/
/* ===========================================================================*/


//const Z_FILTERED          = 1;
//const Z_HUFFMAN_ONLY      = 2;
//const Z_RLE               = 3;
const Z_FIXED               = 4;
//const Z_DEFAULT_STRATEGY  = 0;

/* Possible values of the data_type field (though see inflate()) */
const Z_BINARY              = 0;
const Z_TEXT                = 1;
//const Z_ASCII             = 1; // = Z_TEXT
const Z_UNKNOWN             = 2;

/*============================================================================*/


function zero(buf) { let len = buf.length; while (--len >= 0) { buf[len] = 0; } }

// From zutil.h

const STORED_BLOCK = 0;
const STATIC_TREES = 1;
const DYN_TREES    = 2;
/* The three kinds of block type */

const MIN_MATCH    = 3;
const MAX_MATCH    = 258;
/* The minimum and maximum match lengths */

// From deflate.h
/* ===========================================================================
 * Internal compression state.
 */

const LENGTH_CODES  = 29;
/* number of length codes, not counting the special END_BLOCK code */

const LITERALS      = 256;
/* number of literal bytes 0..255 */

const L_CODES       = LITERALS + 1 + LENGTH_CODES;
/* number of Literal or Length codes, including the END_BLOCK code */

const D_CODES       = 30;
/* number of distance codes */

const BL_CODES      = 19;
/* number of codes used to transfer the bit lengths */

const HEAP_SIZE     = 2 * L_CODES + 1;
/* maximum heap size */

const MAX_BITS      = 15;
/* All codes must not exceed MAX_BITS bits */

const Buf_size      = 16;
/* size of bit buffer in bi_buf */


/* ===========================================================================
 * Constants
 */

const MAX_BL_BITS = 7;
/* Bit length codes must not exceed MAX_BL_BITS bits */

const END_BLOCK   = 256;
/* end of block literal code */

const REP_3_6     = 16;
/* repeat previous bit length 3-6 times (2 bits of repeat count) */

const REPZ_3_10   = 17;
/* repeat a zero length 3-10 times  (3 bits of repeat count) */

const REPZ_11_138 = 18;
/* repeat a zero length 11-138 times  (7 bits of repeat count) */

/* eslint-disable comma-spacing,array-bracket-spacing */
const extra_lbits =   /* extra bits for each length code */
  new Uint8Array([0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]);

const extra_dbits =   /* extra bits for each distance code */
  new Uint8Array([0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]);

const extra_blbits =  /* extra bits for each bit length code */
  new Uint8Array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]);

const bl_order =
  new Uint8Array([16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]);
/* eslint-enable comma-spacing,array-bracket-spacing */

/* The lengths of the bit length codes are sent in order of decreasing
 * probability, to avoid transmitting the lengths for unused bit length codes.
 */

/* ===========================================================================
 * Local data. These are initialized only once.
 */

// We pre-fill arrays with 0 to avoid uninitialized gaps

const DIST_CODE_LEN = 512; /* see definition of array dist_code below */

// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
const static_ltree  = new Array((L_CODES + 2) * 2);
zero(static_ltree);
/* The static literal tree. Since the bit lengths are imposed, there is no
 * need for the L_CODES extra codes used during heap construction. However
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
 * below).
 */

const static_dtree  = new Array(D_CODES * 2);
zero(static_dtree);
/* The static distance tree. (Actually a trivial tree since all codes use
 * 5 bits.)
 */

const _dist_code    = new Array(DIST_CODE_LEN);
zero(_dist_code);
/* Distance codes. The first 256 values correspond to the distances
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 * the 15 bit distances.
 */

const _length_code  = new Array(MAX_MATCH - MIN_MATCH + 1);
zero(_length_code);
/* length code for each normalized match length (0 == MIN_MATCH) */

const base_length   = new Array(LENGTH_CODES);
zero(base_length);
/* First normalized length for each code (0 = MIN_MATCH) */

const base_dist     = new Array(D_CODES);
zero(base_dist);
/* First normalized distance for each code (0 = distance of 1) */


function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {

  this.static_tree  = static_tree;  /* static tree or NULL */
  this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */
  this.extra_base   = extra_base;   /* base index for extra_bits */
  this.elems        = elems;        /* max number of elements in the tree */
  this.max_length   = max_length;   /* max bit length for the codes */

  // show if `static_tree` has data or dummy - needed for monomorphic objects
  this.has_stree    = static_tree && static_tree.length;
}


let static_l_desc;
let static_d_desc;
let static_bl_desc;


function TreeDesc(dyn_tree, stat_desc) {
  this.dyn_tree = dyn_tree;     /* the dynamic tree */
  this.max_code = 0;            /* largest code with non zero frequency */
  this.stat_desc = stat_desc;   /* the corresponding static tree */
}



const d_code = (dist) => {

  return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
};


/* ===========================================================================
 * Output a short LSB first on the stream.
 * IN assertion: there is enough room in pendingBuf.
 */
const put_short = (s, w) => {
//    put_byte(s, (uch)((w) & 0xff));
//    put_byte(s, (uch)((ush)(w) >> 8));
  s.pending_buf[s.pending++] = (w) & 0xff;
  s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
};


/* ===========================================================================
 * Send a value on a given number of bits.
 * IN assertion: length <= 16 and value fits in length bits.
 */
const send_bits = (s, value, length) => {

  if (s.bi_valid > (Buf_size - length)) {
    s.bi_buf |= (value << s.bi_valid) & 0xffff;
    put_short(s, s.bi_buf);
    s.bi_buf = value >> (Buf_size - s.bi_valid);
    s.bi_valid += length - Buf_size;
  } else {
    s.bi_buf |= (value << s.bi_valid) & 0xffff;
    s.bi_valid += length;
  }
};


const send_code = (s, c, tree) => {

  send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
};


/* ===========================================================================
 * Reverse the first len bits of a code, using straightforward code (a faster
 * method would use a table)
 * IN assertion: 1 <= len <= 15
 */
const bi_reverse = (code, len) => {

  let res = 0;
  do {
    res |= code & 1;
    code >>>= 1;
    res <<= 1;
  } while (--len > 0);
  return res >>> 1;
};


/* ===========================================================================
 * Flush the bit buffer, keeping at most 7 bits in it.
 */
const bi_flush = (s) => {

  if (s.bi_valid === 16) {
    put_short(s, s.bi_buf);
    s.bi_buf = 0;
    s.bi_valid = 0;

  } else if (s.bi_valid >= 8) {
    s.pending_buf[s.pending++] = s.bi_buf & 0xff;
    s.bi_buf >>= 8;
    s.bi_valid -= 8;
  }
};


/* ===========================================================================
 * Compute the optimal bit lengths for a tree and update the total bit length
 * for the current block.
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 *    above are the tree nodes sorted by increasing frequency.
 * OUT assertions: the field len is set to the optimal bit length, the
 *     array bl_count contains the frequencies for each bit length.
 *     The length opt_len is updated; static_len is also updated if stree is
 *     not null.
 */
const gen_bitlen = (s, desc) => {
//    deflate_state *s;
//    tree_desc *desc;    /* the tree descriptor */

  const tree            = desc.dyn_tree;
  const max_code        = desc.max_code;
  const stree           = desc.stat_desc.static_tree;
  const has_stree       = desc.stat_desc.has_stree;
  const extra           = desc.stat_desc.extra_bits;
  const base            = desc.stat_desc.extra_base;
  const max_length      = desc.stat_desc.max_length;
  let h;              /* heap index */
  let n, m;           /* iterate over the tree elements */
  let bits;           /* bit length */
  let xbits;          /* extra bits */
  let f;              /* frequency */
  let overflow = 0;   /* number of elements with bit length too large */

  for (bits = 0; bits <= MAX_BITS; bits++) {
    s.bl_count[bits] = 0;
  }

  /* In a first pass, compute the optimal bit lengths (which may
   * overflow in the case of the bit length tree).
   */
  tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */

  for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
    n = s.heap[h];
    bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
    if (bits > max_length) {
      bits = max_length;
      overflow++;
    }
    tree[n * 2 + 1]/*.Len*/ = bits;
    /* We overwrite tree[n].Dad which is no longer needed */

    if (n > max_code) { continue; } /* not a leaf node */

    s.bl_count[bits]++;
    xbits = 0;
    if (n >= base) {
      xbits = extra[n - base];
    }
    f = tree[n * 2]/*.Freq*/;
    s.opt_len += f * (bits + xbits);
    if (has_stree) {
      s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
    }
  }
  if (overflow === 0) { return; }

  // Tracev((stderr,"\nbit length overflow\n"));
  /* This happens for example on obj2 and pic of the Calgary corpus */

  /* Find the first bit length which could increase: */
  do {
    bits = max_length - 1;
    while (s.bl_count[bits] === 0) { bits--; }
    s.bl_count[bits]--;      /* move one leaf down the tree */
    s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
    s.bl_count[max_length]--;
    /* The brother of the overflow item also moves one step up,
     * but this does not affect bl_count[max_length]
     */
    overflow -= 2;
  } while (overflow > 0);

  /* Now recompute all bit lengths, scanning in increasing frequency.
   * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   * lengths instead of fixing only the wrong ones. This idea is taken
   * from 'ar' written by Haruhiko Okumura.)
   */
  for (bits = max_length; bits !== 0; bits--) {
    n = s.bl_count[bits];
    while (n !== 0) {
      m = s.heap[--h];
      if (m > max_code) { continue; }
      if (tree[m * 2 + 1]/*.Len*/ !== bits) {
        // Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
        s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
        tree[m * 2 + 1]/*.Len*/ = bits;
      }
      n--;
    }
  }
};


/* ===========================================================================
 * Generate the codes for a given tree and bit counts (which need not be
 * optimal).
 * IN assertion: the array bl_count contains the bit length statistics for
 * the given tree and the field len is set for all tree elements.
 * OUT assertion: the field code is set for all tree elements of non
 *     zero code length.
 */
const gen_codes = (tree, max_code, bl_count) => {
//    ct_data *tree;             /* the tree to decorate */
//    int max_code;              /* largest code with non zero frequency */
//    ushf *bl_count;            /* number of codes at each bit length */

  const next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
  let code = 0;              /* running code value */
  let bits;                  /* bit index */
  let n;                     /* code index */

  /* The distribution counts are first used to generate the code values
   * without bit reversal.
   */
  for (bits = 1; bits <= MAX_BITS; bits++) {
    code = (code + bl_count[bits - 1]) << 1;
    next_code[bits] = code;
  }
  /* Check that the bit counts in bl_count are consistent. The last code
   * must be all ones.
   */
  //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
  //        "inconsistent bit counts");
  //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));

  for (n = 0;  n <= max_code; n++) {
    let len = tree[n * 2 + 1]/*.Len*/;
    if (len === 0) { continue; }
    /* Now reverse the bits */
    tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);

    //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
    //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
  }
};


/* ===========================================================================
 * Initialize the various 'constant' tables.
 */
const tr_static_init = () => {

  let n;        /* iterates over tree elements */
  let bits;     /* bit counter */
  let length;   /* length value */
  let code;     /* code value */
  let dist;     /* distance index */
  const bl_count = new Array(MAX_BITS + 1);
  /* number of codes at each bit length for an optimal tree */

  // do check in _tr_init()
  //if (static_init_done) return;

  /* For some embedded targets, global variables are not initialized: */
/*#ifdef NO_INIT_GLOBAL_POINTERS
  static_l_desc.static_tree = static_ltree;
  static_l_desc.extra_bits = extra_lbits;
  static_d_desc.static_tree = static_dtree;
  static_d_desc.extra_bits = extra_dbits;
  static_bl_desc.extra_bits = extra_blbits;
#endif*/

  /* Initialize the mapping length (0..255) -> length code (0..28) */
  length = 0;
  for (code = 0; code < LENGTH_CODES - 1; code++) {
    base_length[code] = length;
    for (n = 0; n < (1 << extra_lbits[code]); n++) {
      _length_code[length++] = code;
    }
  }
  //Assert (length == 256, "tr_static_init: length != 256");
  /* Note that the length 255 (match length 258) can be represented
   * in two different ways: code 284 + 5 bits or code 285, so we
   * overwrite length_code[255] to use the best encoding:
   */
  _length_code[length - 1] = code;

  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
  dist = 0;
  for (code = 0; code < 16; code++) {
    base_dist[code] = dist;
    for (n = 0; n < (1 << extra_dbits[code]); n++) {
      _dist_code[dist++] = code;
    }
  }
  //Assert (dist == 256, "tr_static_init: dist != 256");
  dist >>= 7; /* from now on, all distances are divided by 128 */
  for (; code < D_CODES; code++) {
    base_dist[code] = dist << 7;
    for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
      _dist_code[256 + dist++] = code;
    }
  }
  //Assert (dist == 256, "tr_static_init: 256+dist != 512");

  /* Construct the codes of the static literal tree */
  for (bits = 0; bits <= MAX_BITS; bits++) {
    bl_count[bits] = 0;
  }

  n = 0;
  while (n <= 143) {
    static_ltree[n * 2 + 1]/*.Len*/ = 8;
    n++;
    bl_count[8]++;
  }
  while (n <= 255) {
    static_ltree[n * 2 + 1]/*.Len*/ = 9;
    n++;
    bl_count[9]++;
  }
  while (n <= 279) {
    static_ltree[n * 2 + 1]/*.Len*/ = 7;
    n++;
    bl_count[7]++;
  }
  while (n <= 287) {
    static_ltree[n * 2 + 1]/*.Len*/ = 8;
    n++;
    bl_count[8]++;
  }
  /* Codes 286 and 287 do not exist, but we must include them in the
   * tree construction to get a canonical Huffman tree (longest code
   * all ones)
   */
  gen_codes(static_ltree, L_CODES + 1, bl_count);

  /* The static distance tree is trivial: */
  for (n = 0; n < D_CODES; n++) {
    static_dtree[n * 2 + 1]/*.Len*/ = 5;
    static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
  }

  // Now data ready and we can init static trees
  static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
  static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS);
  static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS);

  //static_init_done = true;
};


/* ===========================================================================
 * Initialize a new block.
 */
const init_block = (s) => {

  let n; /* iterates over tree elements */

  /* Initialize the trees. */
  for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
  for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
  for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }

  s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
  s.opt_len = s.static_len = 0;
  s.sym_next = s.matches = 0;
};


/* ===========================================================================
 * Flush the bit buffer and align the output on a byte boundary
 */
const bi_windup = (s) =>
{
  if (s.bi_valid > 8) {
    put_short(s, s.bi_buf);
  } else if (s.bi_valid > 0) {
    //put_byte(s, (Byte)s->bi_buf);
    s.pending_buf[s.pending++] = s.bi_buf;
  }
  s.bi_buf = 0;
  s.bi_valid = 0;
};

/* ===========================================================================
 * Compares to subtrees, using the tree depth as tie breaker when
 * the subtrees have equal frequency. This minimizes the worst case length.
 */
const smaller = (tree, n, m, depth) => {

  const _n2 = n * 2;
  const _m2 = m * 2;
  return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
         (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
};

/* ===========================================================================
 * Restore the heap property by moving down the tree starting at node k,
 * exchanging a node with the smallest of its two sons if necessary, stopping
 * when the heap property is re-established (each father smaller than its
 * two sons).
 */
const pqdownheap = (s, tree, k) => {
//    deflate_state *s;
//    ct_data *tree;  /* the tree to restore */
//    int k;               /* node to move down */

  const v = s.heap[k];
  let j = k << 1;  /* left son of k */
  while (j <= s.heap_len) {
    /* Set j to the smallest of the two sons: */
    if (j < s.heap_len &&
      smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
      j++;
    }
    /* Exit if v is smaller than both sons */
    if (smaller(tree, v, s.heap[j], s.depth)) { break; }

    /* Exchange v with the smallest son */
    s.heap[k] = s.heap[j];
    k = j;

    /* And continue down the tree, setting j to the left son of k */
    j <<= 1;
  }
  s.heap[k] = v;
};


// inlined manually
// const SMALLEST = 1;

/* ===========================================================================
 * Send the block data compressed using the given Huffman trees
 */
const compress_block = (s, ltree, dtree) => {
//    deflate_state *s;
//    const ct_data *ltree; /* literal tree */
//    const ct_data *dtree; /* distance tree */

  let dist;           /* distance of matched string */
  let lc;             /* match length or unmatched char (if dist == 0) */
  let sx = 0;         /* running index in sym_buf */
  let code;           /* the code to send */
  let extra;          /* number of extra bits to send */

  if (s.sym_next !== 0) {
    do {
      dist = s.pending_buf[s.sym_buf + sx++] & 0xff;
      dist += (s.pending_buf[s.sym_buf + sx++] & 0xff) << 8;
      lc = s.pending_buf[s.sym_buf + sx++];
      if (dist === 0) {
        send_code(s, lc, ltree); /* send a literal byte */
        //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
      } else {
        /* Here, lc is the match length - MIN_MATCH */
        code = _length_code[lc];
        send_code(s, code + LITERALS + 1, ltree); /* send the length code */
        extra = extra_lbits[code];
        if (extra !== 0) {
          lc -= base_length[code];
          send_bits(s, lc, extra);       /* send the extra length bits */
        }
        dist--; /* dist is now the match distance - 1 */
        code = d_code(dist);
        //Assert (code < D_CODES, "bad d_code");

        send_code(s, code, dtree);       /* send the distance code */
        extra = extra_dbits[code];
        if (extra !== 0) {
          dist -= base_dist[code];
          send_bits(s, dist, extra);   /* send the extra distance bits */
        }
      } /* literal or match pair ? */

      /* Check that the overlay between pending_buf and sym_buf is ok: */
      //Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");

    } while (sx < s.sym_next);
  }

  send_code(s, END_BLOCK, ltree);
};


/* ===========================================================================
 * Construct one Huffman tree and assigns the code bit strings and lengths.
 * Update the total bit length for the current block.
 * IN assertion: the field freq is set for all tree elements.
 * OUT assertions: the fields len and code are set to the optimal bit length
 *     and corresponding code. The length opt_len is updated; static_len is
 *     also updated if stree is not null. The field max_code is set.
 */
const build_tree = (s, desc) => {
//    deflate_state *s;
//    tree_desc *desc; /* the tree descriptor */

  const tree     = desc.dyn_tree;
  const stree    = desc.stat_desc.static_tree;
  const has_stree = desc.stat_desc.has_stree;
  const elems    = desc.stat_desc.elems;
  let n, m;          /* iterate over heap elements */
  let max_code = -1; /* largest code with non zero frequency */
  let node;          /* new node being created */

  /* Construct the initial heap, with least frequent element in
   * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   * heap[0] is not used.
   */
  s.heap_len = 0;
  s.heap_max = HEAP_SIZE;

  for (n = 0; n < elems; n++) {
    if (tree[n * 2]/*.Freq*/ !== 0) {
      s.heap[++s.heap_len] = max_code = n;
      s.depth[n] = 0;

    } else {
      tree[n * 2 + 1]/*.Len*/ = 0;
    }
  }

  /* The pkzip format requires that at least one distance code exists,
   * and that at least one bit should be sent even if there is only one
   * possible code. So to avoid special checks later on we force at least
   * two codes of non zero frequency.
   */
  while (s.heap_len < 2) {
    node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
    tree[node * 2]/*.Freq*/ = 1;
    s.depth[node] = 0;
    s.opt_len--;

    if (has_stree) {
      s.static_len -= stree[node * 2 + 1]/*.Len*/;
    }
    /* node is 0 or 1 so it does not have extra bits */
  }
  desc.max_code = max_code;

  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   * establish sub-heaps of increasing lengths:
   */
  for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }

  /* Construct the Huffman tree by repeatedly combining the least two
   * frequent nodes.
   */
  node = elems;              /* next internal node of the tree */
  do {
    //pqremove(s, tree, n);  /* n = node of least frequency */
    /*** pqremove ***/
    n = s.heap[1/*SMALLEST*/];
    s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
    pqdownheap(s, tree, 1/*SMALLEST*/);
    /***/

    m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */

    s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
    s.heap[--s.heap_max] = m;

    /* Create a new node father of n and m */
    tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
    s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
    tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;

    /* and insert the new node in the heap */
    s.heap[1/*SMALLEST*/] = node++;
    pqdownheap(s, tree, 1/*SMALLEST*/);

  } while (s.heap_len >= 2);

  s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];

  /* At this point, the fields freq and dad are set. We can now
   * generate the bit lengths.
   */
  gen_bitlen(s, desc);

  /* The field len is now set, we can generate the bit codes */
  gen_codes(tree, max_code, s.bl_count);
};


/* ===========================================================================
 * Scan a literal or distance tree to determine the frequencies of the codes
 * in the bit length tree.
 */
const scan_tree = (s, tree, max_code) => {
//    deflate_state *s;
//    ct_data *tree;   /* the tree to be scanned */
//    int max_code;    /* and its largest code of non zero frequency */

  let n;                     /* iterates over all tree elements */
  let prevlen = -1;          /* last emitted length */
  let curlen;                /* length of current code */

  let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */

  let count = 0;             /* repeat count of the current code */
  let max_count = 7;         /* max repeat count */
  let min_count = 4;         /* min repeat count */

  if (nextlen === 0) {
    max_count = 138;
    min_count = 3;
  }
  tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */

  for (n = 0; n <= max_code; n++) {
    curlen = nextlen;
    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;

    if (++count < max_count && curlen === nextlen) {
      continue;

    } else if (count < min_count) {
      s.bl_tree[curlen * 2]/*.Freq*/ += count;

    } else if (curlen !== 0) {

      if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
      s.bl_tree[REP_3_6 * 2]/*.Freq*/++;

    } else if (count <= 10) {
      s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;

    } else {
      s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
    }

    count = 0;
    prevlen = curlen;

    if (nextlen === 0) {
      max_count = 138;
      min_count = 3;

    } else if (curlen === nextlen) {
      max_count = 6;
      min_count = 3;

    } else {
      max_count = 7;
      min_count = 4;
    }
  }
};


/* ===========================================================================
 * Send a literal or distance tree in compressed form, using the codes in
 * bl_tree.
 */
const send_tree = (s, tree, max_code) => {
//    deflate_state *s;
//    ct_data *tree; /* the tree to be scanned */
//    int max_code;       /* and its largest code of non zero frequency */

  let n;                     /* iterates over all tree elements */
  let prevlen = -1;          /* last emitted length */
  let curlen;                /* length of current code */

  let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */

  let count = 0;             /* repeat count of the current code */
  let max_count = 7;         /* max repeat count */
  let min_count = 4;         /* min repeat count */

  /* tree[max_code+1].Len = -1; */  /* guard already set */
  if (nextlen === 0) {
    max_count = 138;
    min_count = 3;
  }

  for (n = 0; n <= max_code; n++) {
    curlen = nextlen;
    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;

    if (++count < max_count && curlen === nextlen) {
      continue;

    } else if (count < min_count) {
      do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);

    } else if (curlen !== 0) {
      if (curlen !== prevlen) {
        send_code(s, curlen, s.bl_tree);
        count--;
      }
      //Assert(count >= 3 && count <= 6, " 3_6?");
      send_code(s, REP_3_6, s.bl_tree);
      send_bits(s, count - 3, 2);

    } else if (count <= 10) {
      send_code(s, REPZ_3_10, s.bl_tree);
      send_bits(s, count - 3, 3);

    } else {
      send_code(s, REPZ_11_138, s.bl_tree);
      send_bits(s, count - 11, 7);
    }

    count = 0;
    prevlen = curlen;
    if (nextlen === 0) {
      max_count = 138;
      min_count = 3;

    } else if (curlen === nextlen) {
      max_count = 6;
      min_count = 3;

    } else {
      max_count = 7;
      min_count = 4;
    }
  }
};


/* ===========================================================================
 * Construct the Huffman tree for the bit lengths and return the index in
 * bl_order of the last bit length code to send.
 */
const build_bl_tree = (s) => {

  let max_blindex;  /* index of last bit length code of non zero freq */

  /* Determine the bit length frequencies for literal and distance trees */
  scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
  scan_tree(s, s.dyn_dtree, s.d_desc.max_code);

  /* Build the bit length tree: */
  build_tree(s, s.bl_desc);
  /* opt_len now includes the length of the tree representations, except
   * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   */

  /* Determine the number of bit length codes to send. The pkzip format
   * requires that at least 4 bit length codes be sent. (appnote.txt says
   * 3 but the actual value used is 4.)
   */
  for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
    if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
      break;
    }
  }
  /* Update opt_len to include the bit length tree and counts */
  s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
  //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
  //        s->opt_len, s->static_len));

  return max_blindex;
};


/* ===========================================================================
 * Send the header for a block using dynamic Huffman trees: the counts, the
 * lengths of the bit length codes, the literal tree and the distance tree.
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 */
const send_all_trees = (s, lcodes, dcodes, blcodes) => {
//    deflate_state *s;
//    int lcodes, dcodes, blcodes; /* number of codes for each tree */

  let rank;                    /* index in bl_order */

  //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
  //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
  //        "too many codes");
  //Tracev((stderr, "\nbl counts: "));
  send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
  send_bits(s, dcodes - 1,   5);
  send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */
  for (rank = 0; rank < blcodes; rank++) {
    //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
    send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
  }
  //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));

  send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
  //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));

  send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
  //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
};


/* ===========================================================================
 * Check if the data type is TEXT or BINARY, using the following algorithm:
 * - TEXT if the two conditions below are satisfied:
 *    a) There are no non-portable control characters belonging to the
 *       "block list" (0..6, 14..25, 28..31).
 *    b) There is at least one printable character belonging to the
 *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 * - BINARY otherwise.
 * - The following partially-portable control characters form a
 *   "gray list" that is ignored in this detection algorithm:
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 * IN assertion: the fields Freq of dyn_ltree are set.
 */
const detect_data_type = (s) => {
  /* block_mask is the bit mask of block-listed bytes
   * set bits 0..6, 14..25, and 28..31
   * 0xf3ffc07f = binary 11110011111111111100000001111111
   */
  let block_mask = 0xf3ffc07f;
  let n;

  /* Check for non-textual ("block-listed") bytes. */
  for (n = 0; n <= 31; n++, block_mask >>>= 1) {
    if ((block_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
      return Z_BINARY;
    }
  }

  /* Check for textual ("allow-listed") bytes. */
  if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
      s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
    return Z_TEXT;
  }
  for (n = 32; n < LITERALS; n++) {
    if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
      return Z_TEXT;
    }
  }

  /* There are no "block-listed" or "allow-listed" bytes:
   * this stream either is empty or has tolerated ("gray-listed") bytes only.
   */
  return Z_BINARY;
};


let static_init_done = false;

/* ===========================================================================
 * Initialize the tree data structures for a new zlib stream.
 */
const _tr_init = (s) =>
{

  if (!static_init_done) {
    tr_static_init();
    static_init_done = true;
  }

  s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc);
  s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc);
  s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);

  s.bi_buf = 0;
  s.bi_valid = 0;

  /* Initialize the first block of the first file: */
  init_block(s);
};


/* ===========================================================================
 * Send a stored block
 */
const _tr_stored_block = (s, buf, stored_len, last) => {
//DeflateState *s;
//charf *buf;       /* input block */
//ulg stored_len;   /* length of input block */
//int last;         /* one if this is the last block for a file */

  send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */
  bi_windup(s);        /* align on byte boundary */
  put_short(s, stored_len);
  put_short(s, ~stored_len);
  if (stored_len) {
    s.pending_buf.set(s.window.subarray(buf, buf + stored_len), s.pending);
  }
  s.pending += stored_len;
};


/* ===========================================================================
 * Send one empty static block to give enough lookahead for inflate.
 * This takes 10 bits, of which 7 may remain in the bit buffer.
 */
const _tr_align = (s) => {
  send_bits(s, STATIC_TREES << 1, 3);
  send_code(s, END_BLOCK, static_ltree);
  bi_flush(s);
};


/* ===========================================================================
 * Determine the best encoding for the current block: dynamic trees, static
 * trees or store, and write out the encoded block.
 */
const _tr_flush_block = (s, buf, stored_len, last) => {
//DeflateState *s;
//charf *buf;       /* input block, or NULL if too old */
//ulg stored_len;   /* length of input block */
//int last;         /* one if this is the last block for a file */

  let opt_lenb, static_lenb;  /* opt_len and static_len in bytes */
  let max_blindex = 0;        /* index of last bit length code of non zero freq */

  /* Build the Huffman trees unless a stored block is forced */
  if (s.level > 0) {

    /* Check if the file is binary or text */
    if (s.strm.data_type === Z_UNKNOWN) {
      s.strm.data_type = detect_data_type(s);
    }

    /* Construct the literal and distance trees */
    build_tree(s, s.l_desc);
    // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
    //        s->static_len));

    build_tree(s, s.d_desc);
    // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
    //        s->static_len));
    /* At this point, opt_len and static_len are the total bit lengths of
     * the compressed block data, excluding the tree representations.
     */

    /* Build the bit length tree for the above two trees, and get the index
     * in bl_order of the last bit length code to send.
     */
    max_blindex = build_bl_tree(s);

    /* Determine the best encoding. Compute the block lengths in bytes. */
    opt_lenb = (s.opt_len + 3 + 7) >>> 3;
    static_lenb = (s.static_len + 3 + 7) >>> 3;

    // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
    //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
    //        s->sym_next / 3));

    if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }

  } else {
    // Assert(buf != (char*)0, "lost buf");
    opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
  }

  if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
    /* 4: two words for the lengths */

    /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
     * Otherwise we can't have processed more than WSIZE input bytes since
     * the last block flush, because compression would have been
     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
     * transform a block into a stored block.
     */
    _tr_stored_block(s, buf, stored_len, last);

  } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {

    send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
    compress_block(s, static_ltree, static_dtree);

  } else {
    send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
    send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
    compress_block(s, s.dyn_ltree, s.dyn_dtree);
  }
  // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
  /* The above check is made mod 2^32, for files larger than 512 MB
   * and uLong implemented on 32 bits.
   */
  init_block(s);

  if (last) {
    bi_windup(s);
  }
  // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
  //       s->compressed_len-7*last));
};

/* ===========================================================================
 * Save the match info and tally the frequency counts. Return true if
 * the current block must be flushed.
 */
const _tr_tally = (s, dist, lc) => {
//    deflate_state *s;
//    unsigned dist;  /* distance of matched string */
//    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */

  s.pending_buf[s.sym_buf + s.sym_next++] = dist;
  s.pending_buf[s.sym_buf + s.sym_next++] = dist >> 8;
  s.pending_buf[s.sym_buf + s.sym_next++] = lc;
  if (dist === 0) {
    /* lc is the unmatched char */
    s.dyn_ltree[lc * 2]/*.Freq*/++;
  } else {
    s.matches++;
    /* Here, lc is the match length - MIN_MATCH */
    dist--;             /* dist = match distance - 1 */
    //Assert((ush)dist < (ush)MAX_DIST(s) &&
    //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
    //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");

    s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
    s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
  }

  return (s.sym_next === s.sym_end);
};

module.exports._tr_init  = _tr_init;
module.exports._tr_stored_block = _tr_stored_block;
module.exports._tr_flush_block  = _tr_flush_block;
module.exports._tr_tally = _tr_tally;
module.exports._tr_align = _tr_align;

},{}],21:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

function ZStream() {
  /* next input byte */
  this.input = null; // JS specific, because we have no pointers
  this.next_in = 0;
  /* number of bytes available at input */
  this.avail_in = 0;
  /* total number of input bytes read so far */
  this.total_in = 0;
  /* next output byte should be put there */
  this.output = null; // JS specific, because we have no pointers
  this.next_out = 0;
  /* remaining free space at output */
  this.avail_out = 0;
  /* total number of bytes output so far */
  this.total_out = 0;
  /* last error message, NULL if no error */
  this.msg = ''/*Z_NULL*/;
  /* not visible by applications */
  this.state = null;
  /* best guess about the data type: binary or text */
  this.data_type = 2/*Z_UNKNOWN*/;
  /* adler32 value of the uncompressed data */
  this.adler = 0;
}

module.exports = ZStream;

},{}],22:[function(require,module,exports){

},{}],23:[function(require,module,exports){
arguments[4][2][0].apply(exports,arguments)
},{"dup":2}],24:[function(require,module,exports){
arguments[4][22][0].apply(exports,arguments)
},{"dup":22}],25:[function(require,module,exports){
(function (Buffer){(function (){
/*!
 * The buffer module from node.js, for the browser.
 *
 * @author   Feross Aboukhadijeh <https://feross.org>
 * @license  MIT
 */
/* eslint-disable no-proto */

'use strict'

var base64 = require('base64-js')
var ieee754 = require('ieee754')

exports.Buffer = Buffer
exports.SlowBuffer = SlowBuffer
exports.INSPECT_MAX_BYTES = 50

var K_MAX_LENGTH = 0x7fffffff
exports.kMaxLength = K_MAX_LENGTH

/**
 * If `Buffer.TYPED_ARRAY_SUPPORT`:
 *   === true    Use Uint8Array implementation (fastest)
 *   === false   Print warning and recommend using `buffer` v4.x which has an Object
 *               implementation (most compatible, even IE6)
 *
 * Browsers that support typed arrays are IE 10+, Firefox 4+, Chrome 7+, Safari 5.1+,
 * Opera 11.6+, iOS 4.2+.
 *
 * We report that the browser does not support typed arrays if the are not subclassable
 * using __proto__. Firefox 4-29 lacks support for adding new properties to `Uint8Array`
 * (See: https://bugzilla.mozilla.org/show_bug.cgi?id=695438). IE 10 lacks support
 * for __proto__ and has a buggy typed array implementation.
 */
Buffer.TYPED_ARRAY_SUPPORT = typedArraySupport()

if (!Buffer.TYPED_ARRAY_SUPPORT && typeof console !== 'undefined' &&
    typeof console.error === 'function') {
  console.error(
    'This browser lacks typed array (Uint8Array) support which is required by ' +
    '`buffer` v5.x. Use `buffer` v4.x if you require old browser support.'
  )
}

function typedArraySupport () {
  // Can typed array instances can be augmented?
  try {
    var arr = new Uint8Array(1)
    arr.__proto__ = { __proto__: Uint8Array.prototype, foo: function () { return 42 } }
    return arr.foo() === 42
  } catch (e) {
    return false
  }
}

Object.defineProperty(Buffer.prototype, 'parent', {
  enumerable: true,
  get: function () {
    if (!Buffer.isBuffer(this)) return undefined
    return this.buffer
  }
})

Object.defineProperty(Buffer.prototype, 'offset', {
  enumerable: true,
  get: function () {
    if (!Buffer.isBuffer(this)) return undefined
    return this.byteOffset
  }
})

function createBuffer (length) {
  if (length > K_MAX_LENGTH) {
    throw new RangeError('The value "' + length + '" is invalid for option "size"')
  }
  // Return an augmented `Uint8Array` instance
  var buf = new Uint8Array(length)
  buf.__proto__ = Buffer.prototype
  return buf
}

/**
 * The Buffer constructor returns instances of `Uint8Array` that have their
 * prototype changed to `Buffer.prototype`. Furthermore, `Buffer` is a subclass of
 * `Uint8Array`, so the returned instances will have all the node `Buffer` methods
 * and the `Uint8Array` methods. Square bracket notation works as expected -- it
 * returns a single octet.
 *
 * The `Uint8Array` prototype remains unmodified.
 */

function Buffer (arg, encodingOrOffset, length) {
  // Common case.
  if (typeof arg === 'number') {
    if (typeof encodingOrOffset === 'string') {
      throw new TypeError(
        'The "string" argument must be of type string. Received type number'
      )
    }
    return allocUnsafe(arg)
  }
  return from(arg, encodingOrOffset, length)
}

// Fix subarray() in ES2016. See: https://github.com/feross/buffer/pull/97
if (typeof Symbol !== 'undefined' && Symbol.species != null &&
    Buffer[Symbol.species] === Buffer) {
  Object.defineProperty(Buffer, Symbol.species, {
    value: null,
    configurable: true,
    enumerable: false,
    writable: false
  })
}

Buffer.poolSize = 8192 // not used by this implementation

function from (value, encodingOrOffset, length) {
  if (typeof value === 'string') {
    return fromString(value, encodingOrOffset)
  }

  if (ArrayBuffer.isView(value)) {
    return fromArrayLike(value)
  }

  if (value == null) {
    throw TypeError(
      'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' +
      'or Array-like Object. Received type ' + (typeof value)
    )
  }

  if (isInstance(value, ArrayBuffer) ||
      (value && isInstance(value.buffer, ArrayBuffer))) {
    return fromArrayBuffer(value, encodingOrOffset, length)
  }

  if (typeof value === 'number') {
    throw new TypeError(
      'The "value" argument must not be of type number. Received type number'
    )
  }

  var valueOf = value.valueOf && value.valueOf()
  if (valueOf != null && valueOf !== value) {
    return Buffer.from(valueOf, encodingOrOffset, length)
  }

  var b = fromObject(value)
  if (b) return b

  if (typeof Symbol !== 'undefined' && Symbol.toPrimitive != null &&
      typeof value[Symbol.toPrimitive] === 'function') {
    return Buffer.from(
      value[Symbol.toPrimitive]('string'), encodingOrOffset, length
    )
  }

  throw new TypeError(
    'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' +
    'or Array-like Object. Received type ' + (typeof value)
  )
}

/**
 * Functionally equivalent to Buffer(arg, encoding) but throws a TypeError
 * if value is a number.
 * Buffer.from(str[, encoding])
 * Buffer.from(array)
 * Buffer.from(buffer)
 * Buffer.from(arrayBuffer[, byteOffset[, length]])
 **/
Buffer.from = function (value, encodingOrOffset, length) {
  return from(value, encodingOrOffset, length)
}

// Note: Change prototype *after* Buffer.from is defined to workaround Chrome bug:
// https://github.com/feross/buffer/pull/148
Buffer.prototype.__proto__ = Uint8Array.prototype
Buffer.__proto__ = Uint8Array

function assertSize (size) {
  if (typeof size !== 'number') {
    throw new TypeError('"size" argument must be of type number')
  } else if (size < 0) {
    throw new RangeError('The value "' + size + '" is invalid for option "size"')
  }
}

function alloc (size, fill, encoding) {
  assertSize(size)
  if (size <= 0) {
    return createBuffer(size)
  }
  if (fill !== undefined) {
    // Only pay attention to encoding if it's a string. This
    // prevents accidentally sending in a number that would
    // be interpretted as a start offset.
    return typeof encoding === 'string'
      ? createBuffer(size).fill(fill, encoding)
      : createBuffer(size).fill(fill)
  }
  return createBuffer(size)
}

/**
 * Creates a new filled Buffer instance.
 * alloc(size[, fill[, encoding]])
 **/
Buffer.alloc = function (size, fill, encoding) {
  return alloc(size, fill, encoding)
}

function allocUnsafe (size) {
  assertSize(size)
  return createBuffer(size < 0 ? 0 : checked(size) | 0)
}

/**
 * Equivalent to Buffer(num), by default creates a non-zero-filled Buffer instance.
 * */
Buffer.allocUnsafe = function (size) {
  return allocUnsafe(size)
}
/**
 * Equivalent to SlowBuffer(num), by default creates a non-zero-filled Buffer instance.
 */
Buffer.allocUnsafeSlow = function (size) {
  return allocUnsafe(size)
}

function fromString (string, encoding) {
  if (typeof encoding !== 'string' || encoding === '') {
    encoding = 'utf8'
  }

  if (!Buffer.isEncoding(encoding)) {
    throw new TypeError('Unknown encoding: ' + encoding)
  }

  var length = byteLength(string, encoding) | 0
  var buf = createBuffer(length)

  var actual = buf.write(string, encoding)

  if (actual !== length) {
    // Writing a hex string, for example, that contains invalid characters will
    // cause everything after the first invalid character to be ignored. (e.g.
    // 'abxxcd' will be treated as 'ab')
    buf = buf.slice(0, actual)
  }

  return buf
}

function fromArrayLike (array) {
  var length = array.length < 0 ? 0 : checked(array.length) | 0
  var buf = createBuffer(length)
  for (var i = 0; i < length; i += 1) {
    buf[i] = array[i] & 255
  }
  return buf
}

function fromArrayBuffer (array, byteOffset, length) {
  if (byteOffset < 0 || array.byteLength < byteOffset) {
    throw new RangeError('"offset" is outside of buffer bounds')
  }

  if (array.byteLength < byteOffset + (length || 0)) {
    throw new RangeError('"length" is outside of buffer bounds')
  }

  var buf
  if (byteOffset === undefined && length === undefined) {
    buf = new Uint8Array(array)
  } else if (length === undefined) {
    buf = new Uint8Array(array, byteOffset)
  } else {
    buf = new Uint8Array(array, byteOffset, length)
  }

  // Return an augmented `Uint8Array` instance
  buf.__proto__ = Buffer.prototype
  return buf
}

function fromObject (obj) {
  if (Buffer.isBuffer(obj)) {
    var len = checked(obj.length) | 0
    var buf = createBuffer(len)

    if (buf.length === 0) {
      return buf
    }

    obj.copy(buf, 0, 0, len)
    return buf
  }

  if (obj.length !== undefined) {
    if (typeof obj.length !== 'number' || numberIsNaN(obj.length)) {
      return createBuffer(0)
    }
    return fromArrayLike(obj)
  }

  if (obj.type === 'Buffer' && Array.isArray(obj.data)) {
    return fromArrayLike(obj.data)
  }
}

function checked (length) {
  // Note: cannot use `length < K_MAX_LENGTH` here because that fails when
  // length is NaN (which is otherwise coerced to zero.)
  if (length >= K_MAX_LENGTH) {
    throw new RangeError('Attempt to allocate Buffer larger than maximum ' +
                         'size: 0x' + K_MAX_LENGTH.toString(16) + ' bytes')
  }
  return length | 0
}

function SlowBuffer (length) {
  if (+length != length) { // eslint-disable-line eqeqeq
    length = 0
  }
  return Buffer.alloc(+length)
}

Buffer.isBuffer = function isBuffer (b) {
  return b != null && b._isBuffer === true &&
    b !== Buffer.prototype // so Buffer.isBuffer(Buffer.prototype) will be false
}

Buffer.compare = function compare (a, b) {
  if (isInstance(a, Uint8Array)) a = Buffer.from(a, a.offset, a.byteLength)
  if (isInstance(b, Uint8Array)) b = Buffer.from(b, b.offset, b.byteLength)
  if (!Buffer.isBuffer(a) || !Buffer.isBuffer(b)) {
    throw new TypeError(
      'The "buf1", "buf2" arguments must be one of type Buffer or Uint8Array'
    )
  }

  if (a === b) return 0

  var x = a.length
  var y = b.length

  for (var i = 0, len = Math.min(x, y); i < len; ++i) {
    if (a[i] !== b[i]) {
      x = a[i]
      y = b[i]
      break
    }
  }

  if (x < y) return -1
  if (y < x) return 1
  return 0
}

Buffer.isEncoding = function isEncoding (encoding) {
  switch (String(encoding).toLowerCase()) {
    case 'hex':
    case 'utf8':
    case 'utf-8':
    case 'ascii':
    case 'latin1':
    case 'binary':
    case 'base64':
    case 'ucs2':
    case 'ucs-2':
    case 'utf16le':
    case 'utf-16le':
      return true
    default:
      return false
  }
}

Buffer.concat = function concat (list, length) {
  if (!Array.isArray(list)) {
    throw new TypeError('"list" argument must be an Array of Buffers')
  }

  if (list.length === 0) {
    return Buffer.alloc(0)
  }

  var i
  if (length === undefined) {
    length = 0
    for (i = 0; i < list.length; ++i) {
      length += list[i].length
    }
  }

  var buffer = Buffer.allocUnsafe(length)
  var pos = 0
  for (i = 0; i < list.length; ++i) {
    var buf = list[i]
    if (isInstance(buf, Uint8Array)) {
      buf = Buffer.from(buf)
    }
    if (!Buffer.isBuffer(buf)) {
      throw new TypeError('"list" argument must be an Array of Buffers')
    }
    buf.copy(buffer, pos)
    pos += buf.length
  }
  return buffer
}

function byteLength (string, encoding) {
  if (Buffer.isBuffer(string)) {
    return string.length
  }
  if (ArrayBuffer.isView(string) || isInstance(string, ArrayBuffer)) {
    return string.byteLength
  }
  if (typeof string !== 'string') {
    throw new TypeError(
      'The "string" argument must be one of type string, Buffer, or ArrayBuffer. ' +
      'Received type ' + typeof string
    )
  }

  var len = string.length
  var mustMatch = (arguments.length > 2 && arguments[2] === true)
  if (!mustMatch && len === 0) return 0

  // Use a for loop to avoid recursion
  var loweredCase = false
  for (;;) {
    switch (encoding) {
      case 'ascii':
      case 'latin1':
      case 'binary':
        return len
      case 'utf8':
      case 'utf-8':
        return utf8ToBytes(string).length
      case 'ucs2':
      case 'ucs-2':
      case 'utf16le':
      case 'utf-16le':
        return len * 2
      case 'hex':
        return len >>> 1
      case 'base64':
        return base64ToBytes(string).length
      default:
        if (loweredCase) {
          return mustMatch ? -1 : utf8ToBytes(string).length // assume utf8
        }
        encoding = ('' + encoding).toLowerCase()
        loweredCase = true
    }
  }
}
Buffer.byteLength = byteLength

function slowToString (encoding, start, end) {
  var loweredCase = false

  // No need to verify that "this.length <= MAX_UINT32" since it's a read-only
  // property of a typed array.

  // This behaves neither like String nor Uint8Array in that we set start/end
  // to their upper/lower bounds if the value passed is out of range.
  // undefined is handled specially as per ECMA-262 6th Edition,
  // Section 13.3.3.7 Runtime Semantics: KeyedBindingInitialization.
  if (start === undefined || start < 0) {
    start = 0
  }
  // Return early if start > this.length. Done here to prevent potential uint32
  // coercion fail below.
  if (start > this.length) {
    return ''
  }

  if (end === undefined || end > this.length) {
    end = this.length
  }

  if (end <= 0) {
    return ''
  }

  // Force coersion to uint32. This will also coerce falsey/NaN values to 0.
  end >>>= 0
  start >>>= 0

  if (end <= start) {
    return ''
  }

  if (!encoding) encoding = 'utf8'

  while (true) {
    switch (encoding) {
      case 'hex':
        return hexSlice(this, start, end)

      case 'utf8':
      case 'utf-8':
        return utf8Slice(this, start, end)

      case 'ascii':
        return asciiSlice(this, start, end)

      case 'latin1':
      case 'binary':
        return latin1Slice(this, start, end)

      case 'base64':
        return base64Slice(this, start, end)

      case 'ucs2':
      case 'ucs-2':
      case 'utf16le':
      case 'utf-16le':
        return utf16leSlice(this, start, end)

      default:
        if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
        encoding = (encoding + '').toLowerCase()
        loweredCase = true
    }
  }
}

// This property is used by `Buffer.isBuffer` (and the `is-buffer` npm package)
// to detect a Buffer instance. It's not possible to use `instanceof Buffer`
// reliably in a browserify context because there could be multiple different
// copies of the 'buffer' package in use. This method works even for Buffer
// instances that were created from another copy of the `buffer` package.
// See: https://github.com/feross/buffer/issues/154
Buffer.prototype._isBuffer = true

function swap (b, n, m) {
  var i = b[n]
  b[n] = b[m]
  b[m] = i
}

Buffer.prototype.swap16 = function swap16 () {
  var len = this.length
  if (len % 2 !== 0) {
    throw new RangeError('Buffer size must be a multiple of 16-bits')
  }
  for (var i = 0; i < len; i += 2) {
    swap(this, i, i + 1)
  }
  return this
}

Buffer.prototype.swap32 = function swap32 () {
  var len = this.length
  if (len % 4 !== 0) {
    throw new RangeError('Buffer size must be a multiple of 32-bits')
  }
  for (var i = 0; i < len; i += 4) {
    swap(this, i, i + 3)
    swap(this, i + 1, i + 2)
  }
  return this
}

Buffer.prototype.swap64 = function swap64 () {
  var len = this.length
  if (len % 8 !== 0) {
    throw new RangeError('Buffer size must be a multiple of 64-bits')
  }
  for (var i = 0; i < len; i += 8) {
    swap(this, i, i + 7)
    swap(this, i + 1, i + 6)
    swap(this, i + 2, i + 5)
    swap(this, i + 3, i + 4)
  }
  return this
}

Buffer.prototype.toString = function toString () {
  var length = this.length
  if (length === 0) return ''
  if (arguments.length === 0) return utf8Slice(this, 0, length)
  return slowToString.apply(this, arguments)
}

Buffer.prototype.toLocaleString = Buffer.prototype.toString

Buffer.prototype.equals = function equals (b) {
  if (!Buffer.isBuffer(b)) throw new TypeError('Argument must be a Buffer')
  if (this === b) return true
  return Buffer.compare(this, b) === 0
}

Buffer.prototype.inspect = function inspect () {
  var str = ''
  var max = exports.INSPECT_MAX_BYTES
  str = this.toString('hex', 0, max).replace(/(.{2})/g, '$1 ').trim()
  if (this.length > max) str += ' ... '
  return '<Buffer ' + str + '>'
}

Buffer.prototype.compare = function compare (target, start, end, thisStart, thisEnd) {
  if (isInstance(target, Uint8Array)) {
    target = Buffer.from(target, target.offset, target.byteLength)
  }
  if (!Buffer.isBuffer(target)) {
    throw new TypeError(
      'The "target" argument must be one of type Buffer or Uint8Array. ' +
      'Received type ' + (typeof target)
    )
  }

  if (start === undefined) {
    start = 0
  }
  if (end === undefined) {
    end = target ? target.length : 0
  }
  if (thisStart === undefined) {
    thisStart = 0
  }
  if (thisEnd === undefined) {
    thisEnd = this.length
  }

  if (start < 0 || end > target.length || thisStart < 0 || thisEnd > this.length) {
    throw new RangeError('out of range index')
  }

  if (thisStart >= thisEnd && start >= end) {
    return 0
  }
  if (thisStart >= thisEnd) {
    return -1
  }
  if (start >= end) {
    return 1
  }

  start >>>= 0
  end >>>= 0
  thisStart >>>= 0
  thisEnd >>>= 0

  if (this === target) return 0

  var x = thisEnd - thisStart
  var y = end - start
  var len = Math.min(x, y)

  var thisCopy = this.slice(thisStart, thisEnd)
  var targetCopy = target.slice(start, end)

  for (var i = 0; i < len; ++i) {
    if (thisCopy[i] !== targetCopy[i]) {
      x = thisCopy[i]
      y = targetCopy[i]
      break
    }
  }

  if (x < y) return -1
  if (y < x) return 1
  return 0
}

// Finds either the first index of `val` in `buffer` at offset >= `byteOffset`,
// OR the last index of `val` in `buffer` at offset <= `byteOffset`.
//
// Arguments:
// - buffer - a Buffer to search
// - val - a string, Buffer, or number
// - byteOffset - an index into `buffer`; will be clamped to an int32
// - encoding - an optional encoding, relevant is val is a string
// - dir - true for indexOf, false for lastIndexOf
function bidirectionalIndexOf (buffer, val, byteOffset, encoding, dir) {
  // Empty buffer means no match
  if (buffer.length === 0) return -1

  // Normalize byteOffset
  if (typeof byteOffset === 'string') {
    encoding = byteOffset
    byteOffset = 0
  } else if (byteOffset > 0x7fffffff) {
    byteOffset = 0x7fffffff
  } else if (byteOffset < -0x80000000) {
    byteOffset = -0x80000000
  }
  byteOffset = +byteOffset // Coerce to Number.
  if (numberIsNaN(byteOffset)) {
    // byteOffset: it it's undefined, null, NaN, "foo", etc, search whole buffer
    byteOffset = dir ? 0 : (buffer.length - 1)
  }

  // Normalize byteOffset: negative offsets start from the end of the buffer
  if (byteOffset < 0) byteOffset = buffer.length + byteOffset
  if (byteOffset >= buffer.length) {
    if (dir) return -1
    else byteOffset = buffer.length - 1
  } else if (byteOffset < 0) {
    if (dir) byteOffset = 0
    else return -1
  }

  // Normalize val
  if (typeof val === 'string') {
    val = Buffer.from(val, encoding)
  }

  // Finally, search either indexOf (if dir is true) or lastIndexOf
  if (Buffer.isBuffer(val)) {
    // Special case: looking for empty string/buffer always fails
    if (val.length === 0) {
      return -1
    }
    return arrayIndexOf(buffer, val, byteOffset, encoding, dir)
  } else if (typeof val === 'number') {
    val = val & 0xFF // Search for a byte value [0-255]
    if (typeof Uint8Array.prototype.indexOf === 'function') {
      if (dir) {
        return Uint8Array.prototype.indexOf.call(buffer, val, byteOffset)
      } else {
        return Uint8Array.prototype.lastIndexOf.call(buffer, val, byteOffset)
      }
    }
    return arrayIndexOf(buffer, [ val ], byteOffset, encoding, dir)
  }

  throw new TypeError('val must be string, number or Buffer')
}

function arrayIndexOf (arr, val, byteOffset, encoding, dir) {
  var indexSize = 1
  var arrLength = arr.length
  var valLength = val.length

  if (encoding !== undefined) {
    encoding = String(encoding).toLowerCase()
    if (encoding === 'ucs2' || encoding === 'ucs-2' ||
        encoding === 'utf16le' || encoding === 'utf-16le') {
      if (arr.length < 2 || val.length < 2) {
        return -1
      }
      indexSize = 2
      arrLength /= 2
      valLength /= 2
      byteOffset /= 2
    }
  }

  function read (buf, i) {
    if (indexSize === 1) {
      return buf[i]
    } else {
      return buf.readUInt16BE(i * indexSize)
    }
  }

  var i
  if (dir) {
    var foundIndex = -1
    for (i = byteOffset; i < arrLength; i++) {
      if (read(arr, i) === read(val, foundIndex === -1 ? 0 : i - foundIndex)) {
        if (foundIndex === -1) foundIndex = i
        if (i - foundIndex + 1 === valLength) return foundIndex * indexSize
      } else {
        if (foundIndex !== -1) i -= i - foundIndex
        foundIndex = -1
      }
    }
  } else {
    if (byteOffset + valLength > arrLength) byteOffset = arrLength - valLength
    for (i = byteOffset; i >= 0; i--) {
      var found = true
      for (var j = 0; j < valLength; j++) {
        if (read(arr, i + j) !== read(val, j)) {
          found = false
          break
        }
      }
      if (found) return i
    }
  }

  return -1
}

Buffer.prototype.includes = function includes (val, byteOffset, encoding) {
  return this.indexOf(val, byteOffset, encoding) !== -1
}

Buffer.prototype.indexOf = function indexOf (val, byteOffset, encoding) {
  return bidirectionalIndexOf(this, val, byteOffset, encoding, true)
}

Buffer.prototype.lastIndexOf = function lastIndexOf (val, byteOffset, encoding) {
  return bidirectionalIndexOf(this, val, byteOffset, encoding, false)
}

function hexWrite (buf, string, offset, length) {
  offset = Number(offset) || 0
  var remaining = buf.length - offset
  if (!length) {
    length = remaining
  } else {
    length = Number(length)
    if (length > remaining) {
      length = remaining
    }
  }

  var strLen = string.length

  if (length > strLen / 2) {
    length = strLen / 2
  }
  for (var i = 0; i < length; ++i) {
    var parsed = parseInt(string.substr(i * 2, 2), 16)
    if (numberIsNaN(parsed)) return i
    buf[offset + i] = parsed
  }
  return i
}

function utf8Write (buf, string, offset, length) {
  return blitBuffer(utf8ToBytes(string, buf.length - offset), buf, offset, length)
}

function asciiWrite (buf, string, offset, length) {
  return blitBuffer(asciiToBytes(string), buf, offset, length)
}

function latin1Write (buf, string, offset, length) {
  return asciiWrite(buf, string, offset, length)
}

function base64Write (buf, string, offset, length) {
  return blitBuffer(base64ToBytes(string), buf, offset, length)
}

function ucs2Write (buf, string, offset, length) {
  return blitBuffer(utf16leToBytes(string, buf.length - offset), buf, offset, length)
}

Buffer.prototype.write = function write (string, offset, length, encoding) {
  // Buffer#write(string)
  if (offset === undefined) {
    encoding = 'utf8'
    length = this.length
    offset = 0
  // Buffer#write(string, encoding)
  } else if (length === undefined && typeof offset === 'string') {
    encoding = offset
    length = this.length
    offset = 0
  // Buffer#write(string, offset[, length][, encoding])
  } else if (isFinite(offset)) {
    offset = offset >>> 0
    if (isFinite(length)) {
      length = length >>> 0
      if (encoding === undefined) encoding = 'utf8'
    } else {
      encoding = length
      length = undefined
    }
  } else {
    throw new Error(
      'Buffer.write(string, encoding, offset[, length]) is no longer supported'
    )
  }

  var remaining = this.length - offset
  if (length === undefined || length > remaining) length = remaining

  if ((string.length > 0 && (length < 0 || offset < 0)) || offset > this.length) {
    throw new RangeError('Attempt to write outside buffer bounds')
  }

  if (!encoding) encoding = 'utf8'

  var loweredCase = false
  for (;;) {
    switch (encoding) {
      case 'hex':
        return hexWrite(this, string, offset, length)

      case 'utf8':
      case 'utf-8':
        return utf8Write(this, string, offset, length)

      case 'ascii':
        return asciiWrite(this, string, offset, length)

      case 'latin1':
      case 'binary':
        return latin1Write(this, string, offset, length)

      case 'base64':
        // Warning: maxLength not taken into account in base64Write
        return base64Write(this, string, offset, length)

      case 'ucs2':
      case 'ucs-2':
      case 'utf16le':
      case 'utf-16le':
        return ucs2Write(this, string, offset, length)

      default:
        if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
        encoding = ('' + encoding).toLowerCase()
        loweredCase = true
    }
  }
}

Buffer.prototype.toJSON = function toJSON () {
  return {
    type: 'Buffer',
    data: Array.prototype.slice.call(this._arr || this, 0)
  }
}

function base64Slice (buf, start, end) {
  if (start === 0 && end === buf.length) {
    return base64.fromByteArray(buf)
  } else {
    return base64.fromByteArray(buf.slice(start, end))
  }
}

function utf8Slice (buf, start, end) {
  end = Math.min(buf.length, end)
  var res = []

  var i = start
  while (i < end) {
    var firstByte = buf[i]
    var codePoint = null
    var bytesPerSequence = (firstByte > 0xEF) ? 4
      : (firstByte > 0xDF) ? 3
        : (firstByte > 0xBF) ? 2
          : 1

    if (i + bytesPerSequence <= end) {
      var secondByte, thirdByte, fourthByte, tempCodePoint

      switch (bytesPerSequence) {
        case 1:
          if (firstByte < 0x80) {
            codePoint = firstByte
          }
          break
        case 2:
          secondByte = buf[i + 1]
          if ((secondByte & 0xC0) === 0x80) {
            tempCodePoint = (firstByte & 0x1F) << 0x6 | (secondByte & 0x3F)
            if (tempCodePoint > 0x7F) {
              codePoint = tempCodePoint
            }
          }
          break
        case 3:
          secondByte = buf[i + 1]
          thirdByte = buf[i + 2]
          if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80) {
            tempCodePoint = (firstByte & 0xF) << 0xC | (secondByte & 0x3F) << 0x6 | (thirdByte & 0x3F)
            if (tempCodePoint > 0x7FF && (tempCodePoint < 0xD800 || tempCodePoint > 0xDFFF)) {
              codePoint = tempCodePoint
            }
          }
          break
        case 4:
          secondByte = buf[i + 1]
          thirdByte = buf[i + 2]
          fourthByte = buf[i + 3]
          if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80 && (fourthByte & 0xC0) === 0x80) {
            tempCodePoint = (firstByte & 0xF) << 0x12 | (secondByte & 0x3F) << 0xC | (thirdByte & 0x3F) << 0x6 | (fourthByte & 0x3F)
            if (tempCodePoint > 0xFFFF && tempCodePoint < 0x110000) {
              codePoint = tempCodePoint
            }
          }
      }
    }

    if (codePoint === null) {
      // we did not generate a valid codePoint so insert a
      // replacement char (U+FFFD) and advance only 1 byte
      codePoint = 0xFFFD
      bytesPerSequence = 1
    } else if (codePoint > 0xFFFF) {
      // encode to utf16 (surrogate pair dance)
      codePoint -= 0x10000
      res.push(codePoint >>> 10 & 0x3FF | 0xD800)
      codePoint = 0xDC00 | codePoint & 0x3FF
    }

    res.push(codePoint)
    i += bytesPerSequence
  }

  return decodeCodePointsArray(res)
}

// Based on http://stackoverflow.com/a/22747272/680742, the browser with
// the lowest limit is Chrome, with 0x10000 args.
// We go 1 magnitude less, for safety
var MAX_ARGUMENTS_LENGTH = 0x1000

function decodeCodePointsArray (codePoints) {
  var len = codePoints.length
  if (len <= MAX_ARGUMENTS_LENGTH) {
    return String.fromCharCode.apply(String, codePoints) // avoid extra slice()
  }

  // Decode in chunks to avoid "call stack size exceeded".
  var res = ''
  var i = 0
  while (i < len) {
    res += String.fromCharCode.apply(
      String,
      codePoints.slice(i, i += MAX_ARGUMENTS_LENGTH)
    )
  }
  return res
}

function asciiSlice (buf, start, end) {
  var ret = ''
  end = Math.min(buf.length, end)

  for (var i = start; i < end; ++i) {
    ret += String.fromCharCode(buf[i] & 0x7F)
  }
  return ret
}

function latin1Slice (buf, start, end) {
  var ret = ''
  end = Math.min(buf.length, end)

  for (var i = start; i < end; ++i) {
    ret += String.fromCharCode(buf[i])
  }
  return ret
}

function hexSlice (buf, start, end) {
  var len = buf.length

  if (!start || start < 0) start = 0
  if (!end || end < 0 || end > len) end = len

  var out = ''
  for (var i = start; i < end; ++i) {
    out += toHex(buf[i])
  }
  return out
}

function utf16leSlice (buf, start, end) {
  var bytes = buf.slice(start, end)
  var res = ''
  for (var i = 0; i < bytes.length; i += 2) {
    res += String.fromCharCode(bytes[i] + (bytes[i + 1] * 256))
  }
  return res
}

Buffer.prototype.slice = function slice (start, end) {
  var len = this.length
  start = ~~start
  end = end === undefined ? len : ~~end

  if (start < 0) {
    start += len
    if (start < 0) start = 0
  } else if (start > len) {
    start = len
  }

  if (end < 0) {
    end += len
    if (end < 0) end = 0
  } else if (end > len) {
    end = len
  }

  if (end < start) end = start

  var newBuf = this.subarray(start, end)
  // Return an augmented `Uint8Array` instance
  newBuf.__proto__ = Buffer.prototype
  return newBuf
}

/*
 * Need to make sure that buffer isn't trying to write out of bounds.
 */
function checkOffset (offset, ext, length) {
  if ((offset % 1) !== 0 || offset < 0) throw new RangeError('offset is not uint')
  if (offset + ext > length) throw new RangeError('Trying to access beyond buffer length')
}

Buffer.prototype.readUIntLE = function readUIntLE (offset, byteLength, noAssert) {
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) checkOffset(offset, byteLength, this.length)

  var val = this[offset]
  var mul = 1
  var i = 0
  while (++i < byteLength && (mul *= 0x100)) {
    val += this[offset + i] * mul
  }

  return val
}

Buffer.prototype.readUIntBE = function readUIntBE (offset, byteLength, noAssert) {
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) {
    checkOffset(offset, byteLength, this.length)
  }

  var val = this[offset + --byteLength]
  var mul = 1
  while (byteLength > 0 && (mul *= 0x100)) {
    val += this[offset + --byteLength] * mul
  }

  return val
}

Buffer.prototype.readUInt8 = function readUInt8 (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 1, this.length)
  return this[offset]
}

Buffer.prototype.readUInt16LE = function readUInt16LE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 2, this.length)
  return this[offset] | (this[offset + 1] << 8)
}

Buffer.prototype.readUInt16BE = function readUInt16BE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 2, this.length)
  return (this[offset] << 8) | this[offset + 1]
}

Buffer.prototype.readUInt32LE = function readUInt32LE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)

  return ((this[offset]) |
      (this[offset + 1] << 8) |
      (this[offset + 2] << 16)) +
      (this[offset + 3] * 0x1000000)
}

Buffer.prototype.readUInt32BE = function readUInt32BE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)

  return (this[offset] * 0x1000000) +
    ((this[offset + 1] << 16) |
    (this[offset + 2] << 8) |
    this[offset + 3])
}

Buffer.prototype.readIntLE = function readIntLE (offset, byteLength, noAssert) {
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) checkOffset(offset, byteLength, this.length)

  var val = this[offset]
  var mul = 1
  var i = 0
  while (++i < byteLength && (mul *= 0x100)) {
    val += this[offset + i] * mul
  }
  mul *= 0x80

  if (val >= mul) val -= Math.pow(2, 8 * byteLength)

  return val
}

Buffer.prototype.readIntBE = function readIntBE (offset, byteLength, noAssert) {
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) checkOffset(offset, byteLength, this.length)

  var i = byteLength
  var mul = 1
  var val = this[offset + --i]
  while (i > 0 && (mul *= 0x100)) {
    val += this[offset + --i] * mul
  }
  mul *= 0x80

  if (val >= mul) val -= Math.pow(2, 8 * byteLength)

  return val
}

Buffer.prototype.readInt8 = function readInt8 (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 1, this.length)
  if (!(this[offset] & 0x80)) return (this[offset])
  return ((0xff - this[offset] + 1) * -1)
}

Buffer.prototype.readInt16LE = function readInt16LE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 2, this.length)
  var val = this[offset] | (this[offset + 1] << 8)
  return (val & 0x8000) ? val | 0xFFFF0000 : val
}

Buffer.prototype.readInt16BE = function readInt16BE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 2, this.length)
  var val = this[offset + 1] | (this[offset] << 8)
  return (val & 0x8000) ? val | 0xFFFF0000 : val
}

Buffer.prototype.readInt32LE = function readInt32LE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)

  return (this[offset]) |
    (this[offset + 1] << 8) |
    (this[offset + 2] << 16) |
    (this[offset + 3] << 24)
}

Buffer.prototype.readInt32BE = function readInt32BE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)

  return (this[offset] << 24) |
    (this[offset + 1] << 16) |
    (this[offset + 2] << 8) |
    (this[offset + 3])
}

Buffer.prototype.readFloatLE = function readFloatLE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)
  return ieee754.read(this, offset, true, 23, 4)
}

Buffer.prototype.readFloatBE = function readFloatBE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 4, this.length)
  return ieee754.read(this, offset, false, 23, 4)
}

Buffer.prototype.readDoubleLE = function readDoubleLE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 8, this.length)
  return ieee754.read(this, offset, true, 52, 8)
}

Buffer.prototype.readDoubleBE = function readDoubleBE (offset, noAssert) {
  offset = offset >>> 0
  if (!noAssert) checkOffset(offset, 8, this.length)
  return ieee754.read(this, offset, false, 52, 8)
}

function checkInt (buf, value, offset, ext, max, min) {
  if (!Buffer.isBuffer(buf)) throw new TypeError('"buffer" argument must be a Buffer instance')
  if (value > max || value < min) throw new RangeError('"value" argument is out of bounds')
  if (offset + ext > buf.length) throw new RangeError('Index out of range')
}

Buffer.prototype.writeUIntLE = function writeUIntLE (value, offset, byteLength, noAssert) {
  value = +value
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) {
    var maxBytes = Math.pow(2, 8 * byteLength) - 1
    checkInt(this, value, offset, byteLength, maxBytes, 0)
  }

  var mul = 1
  var i = 0
  this[offset] = value & 0xFF
  while (++i < byteLength && (mul *= 0x100)) {
    this[offset + i] = (value / mul) & 0xFF
  }

  return offset + byteLength
}

Buffer.prototype.writeUIntBE = function writeUIntBE (value, offset, byteLength, noAssert) {
  value = +value
  offset = offset >>> 0
  byteLength = byteLength >>> 0
  if (!noAssert) {
    var maxBytes = Math.pow(2, 8 * byteLength) - 1
    checkInt(this, value, offset, byteLength, maxBytes, 0)
  }

  var i = byteLength - 1
  var mul = 1
  this[offset + i] = value & 0xFF
  while (--i >= 0 && (mul *= 0x100)) {
    this[offset + i] = (value / mul) & 0xFF
  }

  return offset + byteLength
}

Buffer.prototype.writeUInt8 = function writeUInt8 (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 1, 0xff, 0)
  this[offset] = (value & 0xff)
  return offset + 1
}

Buffer.prototype.writeUInt16LE = function writeUInt16LE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0)
  this[offset] = (value & 0xff)
  this[offset + 1] = (value >>> 8)
  return offset + 2
}

Buffer.prototype.writeUInt16BE = function writeUInt16BE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0)
  this[offset] = (value >>> 8)
  this[offset + 1] = (value & 0xff)
  return offset + 2
}

Buffer.prototype.writeUInt32LE = function writeUInt32LE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0)
  this[offset + 3] = (value >>> 24)
  this[offset + 2] = (value >>> 16)
  this[offset + 1] = (value >>> 8)
  this[offset] = (value & 0xff)
  return offset + 4
}

Buffer.prototype.writeUInt32BE = function writeUInt32BE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0)
  this[offset] = (value >>> 24)
  this[offset + 1] = (value >>> 16)
  this[offset + 2] = (value >>> 8)
  this[offset + 3] = (value & 0xff)
  return offset + 4
}

Buffer.prototype.writeIntLE = function writeIntLE (value, offset, byteLength, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) {
    var limit = Math.pow(2, (8 * byteLength) - 1)

    checkInt(this, value, offset, byteLength, limit - 1, -limit)
  }

  var i = 0
  var mul = 1
  var sub = 0
  this[offset] = value & 0xFF
  while (++i < byteLength && (mul *= 0x100)) {
    if (value < 0 && sub === 0 && this[offset + i - 1] !== 0) {
      sub = 1
    }
    this[offset + i] = ((value / mul) >> 0) - sub & 0xFF
  }

  return offset + byteLength
}

Buffer.prototype.writeIntBE = function writeIntBE (value, offset, byteLength, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) {
    var limit = Math.pow(2, (8 * byteLength) - 1)

    checkInt(this, value, offset, byteLength, limit - 1, -limit)
  }

  var i = byteLength - 1
  var mul = 1
  var sub = 0
  this[offset + i] = value & 0xFF
  while (--i >= 0 && (mul *= 0x100)) {
    if (value < 0 && sub === 0 && this[offset + i + 1] !== 0) {
      sub = 1
    }
    this[offset + i] = ((value / mul) >> 0) - sub & 0xFF
  }

  return offset + byteLength
}

Buffer.prototype.writeInt8 = function writeInt8 (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 1, 0x7f, -0x80)
  if (value < 0) value = 0xff + value + 1
  this[offset] = (value & 0xff)
  return offset + 1
}

Buffer.prototype.writeInt16LE = function writeInt16LE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000)
  this[offset] = (value & 0xff)
  this[offset + 1] = (value >>> 8)
  return offset + 2
}

Buffer.prototype.writeInt16BE = function writeInt16BE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000)
  this[offset] = (value >>> 8)
  this[offset + 1] = (value & 0xff)
  return offset + 2
}

Buffer.prototype.writeInt32LE = function writeInt32LE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000)
  this[offset] = (value & 0xff)
  this[offset + 1] = (value >>> 8)
  this[offset + 2] = (value >>> 16)
  this[offset + 3] = (value >>> 24)
  return offset + 4
}

Buffer.prototype.writeInt32BE = function writeInt32BE (value, offset, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000)
  if (value < 0) value = 0xffffffff + value + 1
  this[offset] = (value >>> 24)
  this[offset + 1] = (value >>> 16)
  this[offset + 2] = (value >>> 8)
  this[offset + 3] = (value & 0xff)
  return offset + 4
}

function checkIEEE754 (buf, value, offset, ext, max, min) {
  if (offset + ext > buf.length) throw new RangeError('Index out of range')
  if (offset < 0) throw new RangeError('Index out of range')
}

function writeFloat (buf, value, offset, littleEndian, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) {
    checkIEEE754(buf, value, offset, 4, 3.4028234663852886e+38, -3.4028234663852886e+38)
  }
  ieee754.write(buf, value, offset, littleEndian, 23, 4)
  return offset + 4
}

Buffer.prototype.writeFloatLE = function writeFloatLE (value, offset, noAssert) {
  return writeFloat(this, value, offset, true, noAssert)
}

Buffer.prototype.writeFloatBE = function writeFloatBE (value, offset, noAssert) {
  return writeFloat(this, value, offset, false, noAssert)
}

function writeDouble (buf, value, offset, littleEndian, noAssert) {
  value = +value
  offset = offset >>> 0
  if (!noAssert) {
    checkIEEE754(buf, value, offset, 8, 1.7976931348623157E+308, -1.7976931348623157E+308)
  }
  ieee754.write(buf, value, offset, littleEndian, 52, 8)
  return offset + 8
}

Buffer.prototype.writeDoubleLE = function writeDoubleLE (value, offset, noAssert) {
  return writeDouble(this, value, offset, true, noAssert)
}

Buffer.prototype.writeDoubleBE = function writeDoubleBE (value, offset, noAssert) {
  return writeDouble(this, value, offset, false, noAssert)
}

// copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length)
Buffer.prototype.copy = function copy (target, targetStart, start, end) {
  if (!Buffer.isBuffer(target)) throw new TypeError('argument should be a Buffer')
  if (!start) start = 0
  if (!end && end !== 0) end = this.length
  if (targetStart >= target.length) targetStart = target.length
  if (!targetStart) targetStart = 0
  if (end > 0 && end < start) end = start

  // Copy 0 bytes; we're done
  if (end === start) return 0
  if (target.length === 0 || this.length === 0) return 0

  // Fatal error conditions
  if (targetStart < 0) {
    throw new RangeError('targetStart out of bounds')
  }
  if (start < 0 || start >= this.length) throw new RangeError('Index out of range')
  if (end < 0) throw new RangeError('sourceEnd out of bounds')

  // Are we oob?
  if (end > this.length) end = this.length
  if (target.length - targetStart < end - start) {
    end = target.length - targetStart + start
  }

  var len = end - start

  if (this === target && typeof Uint8Array.prototype.copyWithin === 'function') {
    // Use built-in when available, missing from IE11
    this.copyWithin(targetStart, start, end)
  } else if (this === target && start < targetStart && targetStart < end) {
    // descending copy from end
    for (var i = len - 1; i >= 0; --i) {
      target[i + targetStart] = this[i + start]
    }
  } else {
    Uint8Array.prototype.set.call(
      target,
      this.subarray(start, end),
      targetStart
    )
  }

  return len
}

// Usage:
//    buffer.fill(number[, offset[, end]])
//    buffer.fill(buffer[, offset[, end]])
//    buffer.fill(string[, offset[, end]][, encoding])
Buffer.prototype.fill = function fill (val, start, end, encoding) {
  // Handle string cases:
  if (typeof val === 'string') {
    if (typeof start === 'string') {
      encoding = start
      start = 0
      end = this.length
    } else if (typeof end === 'string') {
      encoding = end
      end = this.length
    }
    if (encoding !== undefined && typeof encoding !== 'string') {
      throw new TypeError('encoding must be a string')
    }
    if (typeof encoding === 'string' && !Buffer.isEncoding(encoding)) {
      throw new TypeError('Unknown encoding: ' + encoding)
    }
    if (val.length === 1) {
      var code = val.charCodeAt(0)
      if ((encoding === 'utf8' && code < 128) ||
          encoding === 'latin1') {
        // Fast path: If `val` fits into a single byte, use that numeric value.
        val = code
      }
    }
  } else if (typeof val === 'number') {
    val = val & 255
  }

  // Invalid ranges are not set to a default, so can range check early.
  if (start < 0 || this.length < start || this.length < end) {
    throw new RangeError('Out of range index')
  }

  if (end <= start) {
    return this
  }

  start = start >>> 0
  end = end === undefined ? this.length : end >>> 0

  if (!val) val = 0

  var i
  if (typeof val === 'number') {
    for (i = start; i < end; ++i) {
      this[i] = val
    }
  } else {
    var bytes = Buffer.isBuffer(val)
      ? val
      : Buffer.from(val, encoding)
    var len = bytes.length
    if (len === 0) {
      throw new TypeError('The value "' + val +
        '" is invalid for argument "value"')
    }
    for (i = 0; i < end - start; ++i) {
      this[i + start] = bytes[i % len]
    }
  }

  return this
}

// HELPER FUNCTIONS
// ================

var INVALID_BASE64_RE = /[^+/0-9A-Za-z-_]/g

function base64clean (str) {
  // Node takes equal signs as end of the Base64 encoding
  str = str.split('=')[0]
  // Node strips out invalid characters like \n and \t from the string, base64-js does not
  str = str.trim().replace(INVALID_BASE64_RE, '')
  // Node converts strings with length < 2 to ''
  if (str.length < 2) return ''
  // Node allows for non-padded base64 strings (missing trailing ===), base64-js does not
  while (str.length % 4 !== 0) {
    str = str + '='
  }
  return str
}

function toHex (n) {
  if (n < 16) return '0' + n.toString(16)
  return n.toString(16)
}

function utf8ToBytes (string, units) {
  units = units || Infinity
  var codePoint
  var length = string.length
  var leadSurrogate = null
  var bytes = []

  for (var i = 0; i < length; ++i) {
    codePoint = string.charCodeAt(i)

    // is surrogate component
    if (codePoint > 0xD7FF && codePoint < 0xE000) {
      // last char was a lead
      if (!leadSurrogate) {
        // no lead yet
        if (codePoint > 0xDBFF) {
          // unexpected trail
          if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
          continue
        } else if (i + 1 === length) {
          // unpaired lead
          if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
          continue
        }

        // valid lead
        leadSurrogate = codePoint

        continue
      }

      // 2 leads in a row
      if (codePoint < 0xDC00) {
        if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
        leadSurrogate = codePoint
        continue
      }

      // valid surrogate pair
      codePoint = (leadSurrogate - 0xD800 << 10 | codePoint - 0xDC00) + 0x10000
    } else if (leadSurrogate) {
      // valid bmp char, but last char was a lead
      if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
    }

    leadSurrogate = null

    // encode utf8
    if (codePoint < 0x80) {
      if ((units -= 1) < 0) break
      bytes.push(codePoint)
    } else if (codePoint < 0x800) {
      if ((units -= 2) < 0) break
      bytes.push(
        codePoint >> 0x6 | 0xC0,
        codePoint & 0x3F | 0x80
      )
    } else if (codePoint < 0x10000) {
      if ((units -= 3) < 0) break
      bytes.push(
        codePoint >> 0xC | 0xE0,
        codePoint >> 0x6 & 0x3F | 0x80,
        codePoint & 0x3F | 0x80
      )
    } else if (codePoint < 0x110000) {
      if ((units -= 4) < 0) break
      bytes.push(
        codePoint >> 0x12 | 0xF0,
        codePoint >> 0xC & 0x3F | 0x80,
        codePoint >> 0x6 & 0x3F | 0x80,
        codePoint & 0x3F | 0x80
      )
    } else {
      throw new Error('Invalid code point')
    }
  }

  return bytes
}

function asciiToBytes (str) {
  var byteArray = []
  for (var i = 0; i < str.length; ++i) {
    // Node's code seems to be doing this and not & 0x7F..
    byteArray.push(str.charCodeAt(i) & 0xFF)
  }
  return byteArray
}

function utf16leToBytes (str, units) {
  var c, hi, lo
  var byteArray = []
  for (var i = 0; i < str.length; ++i) {
    if ((units -= 2) < 0) break

    c = str.charCodeAt(i)
    hi = c >> 8
    lo = c % 256
    byteArray.push(lo)
    byteArray.push(hi)
  }

  return byteArray
}

function base64ToBytes (str) {
  return base64.toByteArray(base64clean(str))
}

function blitBuffer (src, dst, offset, length) {
  for (var i = 0; i < length; ++i) {
    if ((i + offset >= dst.length) || (i >= src.length)) break
    dst[i + offset] = src[i]
  }
  return i
}

// ArrayBuffer or Uint8Array objects from other contexts (i.e. iframes) do not pass
// the `instanceof` check but they should be treated as of that type.
// See: https://github.com/feross/buffer/issues/166
function isInstance (obj, type) {
  return obj instanceof type ||
    (obj != null && obj.constructor != null && obj.constructor.name != null &&
      obj.constructor.name === type.name)
}
function numberIsNaN (obj) {
  // For IE11 support
  return obj !== obj // eslint-disable-line no-self-compare
}

}).call(this)}).call(this,require("buffer").Buffer)
},{"base64-js":23,"buffer":25,"ieee754":27}],26:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

'use strict';

var R = typeof Reflect === 'object' ? Reflect : null
var ReflectApply = R && typeof R.apply === 'function'
  ? R.apply
  : function ReflectApply(target, receiver, args) {
    return Function.prototype.apply.call(target, receiver, args);
  }

var ReflectOwnKeys
if (R && typeof R.ownKeys === 'function') {
  ReflectOwnKeys = R.ownKeys
} else if (Object.getOwnPropertySymbols) {
  ReflectOwnKeys = function ReflectOwnKeys(target) {
    return Object.getOwnPropertyNames(target)
      .concat(Object.getOwnPropertySymbols(target));
  };
} else {
  ReflectOwnKeys = function ReflectOwnKeys(target) {
    return Object.getOwnPropertyNames(target);
  };
}

function ProcessEmitWarning(warning) {
  if (console && console.warn) console.warn(warning);
}

var NumberIsNaN = Number.isNaN || function NumberIsNaN(value) {
  return value !== value;
}

function EventEmitter() {
  EventEmitter.init.call(this);
}
module.exports = EventEmitter;
module.exports.once = once;

// Backwards-compat with node 0.10.x
EventEmitter.EventEmitter = EventEmitter;

EventEmitter.prototype._events = undefined;
EventEmitter.prototype._eventsCount = 0;
EventEmitter.prototype._maxListeners = undefined;

// By default EventEmitters will print a warning if more than 10 listeners are
// added to it. This is a useful default which helps finding memory leaks.
var defaultMaxListeners = 10;

function checkListener(listener) {
  if (typeof listener !== 'function') {
    throw new TypeError('The "listener" argument must be of type Function. Received type ' + typeof listener);
  }
}

Object.defineProperty(EventEmitter, 'defaultMaxListeners', {
  enumerable: true,
  get: function() {
    return defaultMaxListeners;
  },
  set: function(arg) {
    if (typeof arg !== 'number' || arg < 0 || NumberIsNaN(arg)) {
      throw new RangeError('The value of "defaultMaxListeners" is out of range. It must be a non-negative number. Received ' + arg + '.');
    }
    defaultMaxListeners = arg;
  }
});

EventEmitter.init = function() {

  if (this._events === undefined ||
      this._events === Object.getPrototypeOf(this)._events) {
    this._events = Object.create(null);
    this._eventsCount = 0;
  }

  this._maxListeners = this._maxListeners || undefined;
};

// Obviously not all Emitters should be limited to 10. This function allows
// that to be increased. Set to zero for unlimited.
EventEmitter.prototype.setMaxListeners = function setMaxListeners(n) {
  if (typeof n !== 'number' || n < 0 || NumberIsNaN(n)) {
    throw new RangeError('The value of "n" is out of range. It must be a non-negative number. Received ' + n + '.');
  }
  this._maxListeners = n;
  return this;
};

function _getMaxListeners(that) {
  if (that._maxListeners === undefined)
    return EventEmitter.defaultMaxListeners;
  return that._maxListeners;
}

EventEmitter.prototype.getMaxListeners = function getMaxListeners() {
  return _getMaxListeners(this);
};

EventEmitter.prototype.emit = function emit(type) {
  var args = [];
  for (var i = 1; i < arguments.length; i++) args.push(arguments[i]);
  var doError = (type === 'error');

  var events = this._events;
  if (events !== undefined)
    doError = (doError && events.error === undefined);
  else if (!doError)
    return false;

  // If there is no 'error' event listener then throw.
  if (doError) {
    var er;
    if (args.length > 0)
      er = args[0];
    if (er instanceof Error) {
      // Note: The comments on the `throw` lines are intentional, they show
      // up in Node's output if this results in an unhandled exception.
      throw er; // Unhandled 'error' event
    }
    // At least give some kind of context to the user
    var err = new Error('Unhandled error.' + (er ? ' (' + er.message + ')' : ''));
    err.context = er;
    throw err; // Unhandled 'error' event
  }

  var handler = events[type];

  if (handler === undefined)
    return false;

  if (typeof handler === 'function') {
    ReflectApply(handler, this, args);
  } else {
    var len = handler.length;
    var listeners = arrayClone(handler, len);
    for (var i = 0; i < len; ++i)
      ReflectApply(listeners[i], this, args);
  }

  return true;
};

function _addListener(target, type, listener, prepend) {
  var m;
  var events;
  var existing;

  checkListener(listener);

  events = target._events;
  if (events === undefined) {
    events = target._events = Object.create(null);
    target._eventsCount = 0;
  } else {
    // To avoid recursion in the case that type === "newListener"! Before
    // adding it to the listeners, first emit "newListener".
    if (events.newListener !== undefined) {
      target.emit('newListener', type,
                  listener.listener ? listener.listener : listener);

      // Re-assign `events` because a newListener handler could have caused the
      // this._events to be assigned to a new object
      events = target._events;
    }
    existing = events[type];
  }

  if (existing === undefined) {
    // Optimize the case of one listener. Don't need the extra array object.
    existing = events[type] = listener;
    ++target._eventsCount;
  } else {
    if (typeof existing === 'function') {
      // Adding the second element, need to change to array.
      existing = events[type] =
        prepend ? [listener, existing] : [existing, listener];
      // If we've already got an array, just append.
    } else if (prepend) {
      existing.unshift(listener);
    } else {
      existing.push(listener);
    }

    // Check for listener leak
    m = _getMaxListeners(target);
    if (m > 0 && existing.length > m && !existing.warned) {
      existing.warned = true;
      // No error code for this since it is a Warning
      // eslint-disable-next-line no-restricted-syntax
      var w = new Error('Possible EventEmitter memory leak detected. ' +
                          existing.length + ' ' + String(type) + ' listeners ' +
                          'added. Use emitter.setMaxListeners() to ' +
                          'increase limit');
      w.name = 'MaxListenersExceededWarning';
      w.emitter = target;
      w.type = type;
      w.count = existing.length;
      ProcessEmitWarning(w);
    }
  }

  return target;
}

EventEmitter.prototype.addListener = function addListener(type, listener) {
  return _addListener(this, type, listener, false);
};

EventEmitter.prototype.on = EventEmitter.prototype.addListener;

EventEmitter.prototype.prependListener =
    function prependListener(type, listener) {
      return _addListener(this, type, listener, true);
    };

function onceWrapper() {
  if (!this.fired) {
    this.target.removeListener(this.type, this.wrapFn);
    this.fired = true;
    if (arguments.length === 0)
      return this.listener.call(this.target);
    return this.listener.apply(this.target, arguments);
  }
}

function _onceWrap(target, type, listener) {
  var state = { fired: false, wrapFn: undefined, target: target, type: type, listener: listener };
  var wrapped = onceWrapper.bind(state);
  wrapped.listener = listener;
  state.wrapFn = wrapped;
  return wrapped;
}

EventEmitter.prototype.once = function once(type, listener) {
  checkListener(listener);
  this.on(type, _onceWrap(this, type, listener));
  return this;
};

EventEmitter.prototype.prependOnceListener =
    function prependOnceListener(type, listener) {
      checkListener(listener);
      this.prependListener(type, _onceWrap(this, type, listener));
      return this;
    };

// Emits a 'removeListener' event if and only if the listener was removed.
EventEmitter.prototype.removeListener =
    function removeListener(type, listener) {
      var list, events, position, i, originalListener;

      checkListener(listener);

      events = this._events;
      if (events === undefined)
        return this;

      list = events[type];
      if (list === undefined)
        return this;

      if (list === listener || list.listener === listener) {
        if (--this._eventsCount === 0)
          this._events = Object.create(null);
        else {
          delete events[type];
          if (events.removeListener)
            this.emit('removeListener', type, list.listener || listener);
        }
      } else if (typeof list !== 'function') {
        position = -1;

        for (i = list.length - 1; i >= 0; i--) {
          if (list[i] === listener || list[i].listener === listener) {
            originalListener = list[i].listener;
            position = i;
            break;
          }
        }

        if (position < 0)
          return this;

        if (position === 0)
          list.shift();
        else {
          spliceOne(list, position);
        }

        if (list.length === 1)
          events[type] = list[0];

        if (events.removeListener !== undefined)
          this.emit('removeListener', type, originalListener || listener);
      }

      return this;
    };

EventEmitter.prototype.off = EventEmitter.prototype.removeListener;

EventEmitter.prototype.removeAllListeners =
    function removeAllListeners(type) {
      var listeners, events, i;

      events = this._events;
      if (events === undefined)
        return this;

      // not listening for removeListener, no need to emit
      if (events.removeListener === undefined) {
        if (arguments.length === 0) {
          this._events = Object.create(null);
          this._eventsCount = 0;
        } else if (events[type] !== undefined) {
          if (--this._eventsCount === 0)
            this._events = Object.create(null);
          else
            delete events[type];
        }
        return this;
      }

      // emit removeListener for all listeners on all events
      if (arguments.length === 0) {
        var keys = Object.keys(events);
        var key;
        for (i = 0; i < keys.length; ++i) {
          key = keys[i];
          if (key === 'removeListener') continue;
          this.removeAllListeners(key);
        }
        this.removeAllListeners('removeListener');
        this._events = Object.create(null);
        this._eventsCount = 0;
        return this;
      }

      listeners = events[type];

      if (typeof listeners === 'function') {
        this.removeListener(type, listeners);
      } else if (listeners !== undefined) {
        // LIFO order
        for (i = listeners.length - 1; i >= 0; i--) {
          this.removeListener(type, listeners[i]);
        }
      }

      return this;
    };

function _listeners(target, type, unwrap) {
  var events = target._events;

  if (events === undefined)
    return [];

  var evlistener = events[type];
  if (evlistener === undefined)
    return [];

  if (typeof evlistener === 'function')
    return unwrap ? [evlistener.listener || evlistener] : [evlistener];

  return unwrap ?
    unwrapListeners(evlistener) : arrayClone(evlistener, evlistener.length);
}

EventEmitter.prototype.listeners = function listeners(type) {
  return _listeners(this, type, true);
};

EventEmitter.prototype.rawListeners = function rawListeners(type) {
  return _listeners(this, type, false);
};

EventEmitter.listenerCount = function(emitter, type) {
  if (typeof emitter.listenerCount === 'function') {
    return emitter.listenerCount(type);
  } else {
    return listenerCount.call(emitter, type);
  }
};

EventEmitter.prototype.listenerCount = listenerCount;
function listenerCount(type) {
  var events = this._events;

  if (events !== undefined) {
    var evlistener = events[type];

    if (typeof evlistener === 'function') {
      return 1;
    } else if (evlistener !== undefined) {
      return evlistener.length;
    }
  }

  return 0;
}

EventEmitter.prototype.eventNames = function eventNames() {
  return this._eventsCount > 0 ? ReflectOwnKeys(this._events) : [];
};

function arrayClone(arr, n) {
  var copy = new Array(n);
  for (var i = 0; i < n; ++i)
    copy[i] = arr[i];
  return copy;
}

function spliceOne(list, index) {
  for (; index + 1 < list.length; index++)
    list[index] = list[index + 1];
  list.pop();
}

function unwrapListeners(arr) {
  var ret = new Array(arr.length);
  for (var i = 0; i < ret.length; ++i) {
    ret[i] = arr[i].listener || arr[i];
  }
  return ret;
}

function once(emitter, name) {
  return new Promise(function (resolve, reject) {
    function errorListener(err) {
      emitter.removeListener(name, resolver);
      reject(err);
    }

    function resolver() {
      if (typeof emitter.removeListener === 'function') {
        emitter.removeListener('error', errorListener);
      }
      resolve([].slice.call(arguments));
    };

    eventTargetAgnosticAddListener(emitter, name, resolver, { once: true });
    if (name !== 'error') {
      addErrorHandlerIfEventEmitter(emitter, errorListener, { once: true });
    }
  });
}

function addErrorHandlerIfEventEmitter(emitter, handler, flags) {
  if (typeof emitter.on === 'function') {
    eventTargetAgnosticAddListener(emitter, 'error', handler, flags);
  }
}

function eventTargetAgnosticAddListener(emitter, name, listener, flags) {
  if (typeof emitter.on === 'function') {
    if (flags.once) {
      emitter.once(name, listener);
    } else {
      emitter.on(name, listener);
    }
  } else if (typeof emitter.addEventListener === 'function') {
    // EventTarget does not have `error` event semantics like Node
    // EventEmitters, we do not listen for `error` events here.
    emitter.addEventListener(name, function wrapListener(arg) {
      // IE does not have builtin `{ once: true }` support so we
      // have to do it manually.
      if (flags.once) {
        emitter.removeEventListener(name, wrapListener);
      }
      listener(arg);
    });
  } else {
    throw new TypeError('The "emitter" argument must be of type EventEmitter. Received type ' + typeof emitter);
  }
}

},{}],27:[function(require,module,exports){
/*! ieee754. BSD-3-Clause License. Feross Aboukhadijeh <https://feross.org/opensource> */
exports.read = function (buffer, offset, isLE, mLen, nBytes) {
  var e, m
  var eLen = (nBytes * 8) - mLen - 1
  var eMax = (1 << eLen) - 1
  var eBias = eMax >> 1
  var nBits = -7
  var i = isLE ? (nBytes - 1) : 0
  var d = isLE ? -1 : 1
  var s = buffer[offset + i]

  i += d

  e = s & ((1 << (-nBits)) - 1)
  s >>= (-nBits)
  nBits += eLen
  for (; nBits > 0; e = (e * 256) + buffer[offset + i], i += d, nBits -= 8) {}

  m = e & ((1 << (-nBits)) - 1)
  e >>= (-nBits)
  nBits += mLen
  for (; nBits > 0; m = (m * 256) + buffer[offset + i], i += d, nBits -= 8) {}

  if (e === 0) {
    e = 1 - eBias
  } else if (e === eMax) {
    return m ? NaN : ((s ? -1 : 1) * Infinity)
  } else {
    m = m + Math.pow(2, mLen)
    e = e - eBias
  }
  return (s ? -1 : 1) * m * Math.pow(2, e - mLen)
}

exports.write = function (buffer, value, offset, isLE, mLen, nBytes) {
  var e, m, c
  var eLen = (nBytes * 8) - mLen - 1
  var eMax = (1 << eLen) - 1
  var eBias = eMax >> 1
  var rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0)
  var i = isLE ? 0 : (nBytes - 1)
  var d = isLE ? 1 : -1
  var s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0

  value = Math.abs(value)

  if (isNaN(value) || value === Infinity) {
    m = isNaN(value) ? 1 : 0
    e = eMax
  } else {
    e = Math.floor(Math.log(value) / Math.LN2)
    if (value * (c = Math.pow(2, -e)) < 1) {
      e--
      c *= 2
    }
    if (e + eBias >= 1) {
      value += rt / c
    } else {
      value += rt * Math.pow(2, 1 - eBias)
    }
    if (value * c >= 2) {
      e++
      c /= 2
    }

    if (e + eBias >= eMax) {
      m = 0
      e = eMax
    } else if (e + eBias >= 1) {
      m = ((value * c) - 1) * Math.pow(2, mLen)
      e = e + eBias
    } else {
      m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen)
      e = 0
    }
  }

  for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8) {}

  e = (e << mLen) | m
  eLen += mLen
  for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8) {}

  buffer[offset + i - d] |= s * 128
}

},{}],28:[function(require,module,exports){
if (typeof Object.create === 'function') {
  // implementation from standard node.js 'util' module
  module.exports = function inherits(ctor, superCtor) {
    if (superCtor) {
      ctor.super_ = superCtor
      ctor.prototype = Object.create(superCtor.prototype, {
        constructor: {
          value: ctor,
          enumerable: false,
          writable: true,
          configurable: true
        }
      })
    }
  };
} else {
  // old school shim for old browsers
  module.exports = function inherits(ctor, superCtor) {
    if (superCtor) {
      ctor.super_ = superCtor
      var TempCtor = function () {}
      TempCtor.prototype = superCtor.prototype
      ctor.prototype = new TempCtor()
      ctor.prototype.constructor = ctor
    }
  }
}

},{}],29:[function(require,module,exports){
(function (process){(function (){
// 'path' module extracted from Node.js v8.11.1 (only the posix part)
// transplited with Babel

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

'use strict';

function assertPath(path) {
  if (typeof path !== 'string') {
    throw new TypeError('Path must be a string. Received ' + JSON.stringify(path));
  }
}

// Resolves . and .. elements in a path with directory names
function normalizeStringPosix(path, allowAboveRoot) {
  var res = '';
  var lastSegmentLength = 0;
  var lastSlash = -1;
  var dots = 0;
  var code;
  for (var i = 0; i <= path.length; ++i) {
    if (i < path.length)
      code = path.charCodeAt(i);
    else if (code === 47 /*/*/)
      break;
    else
      code = 47 /*/*/;
    if (code === 47 /*/*/) {
      if (lastSlash === i - 1 || dots === 1) {
        // NOOP
      } else if (lastSlash !== i - 1 && dots === 2) {
        if (res.length < 2 || lastSegmentLength !== 2 || res.charCodeAt(res.length - 1) !== 46 /*.*/ || res.charCodeAt(res.length - 2) !== 46 /*.*/) {
          if (res.length > 2) {
            var lastSlashIndex = res.lastIndexOf('/');
            if (lastSlashIndex !== res.length - 1) {
              if (lastSlashIndex === -1) {
                res = '';
                lastSegmentLength = 0;
              } else {
                res = res.slice(0, lastSlashIndex);
                lastSegmentLength = res.length - 1 - res.lastIndexOf('/');
              }
              lastSlash = i;
              dots = 0;
              continue;
            }
          } else if (res.length === 2 || res.length === 1) {
            res = '';
            lastSegmentLength = 0;
            lastSlash = i;
            dots = 0;
            continue;
          }
        }
        if (allowAboveRoot) {
          if (res.length > 0)
            res += '/..';
          else
            res = '..';
          lastSegmentLength = 2;
        }
      } else {
        if (res.length > 0)
          res += '/' + path.slice(lastSlash + 1, i);
        else
          res = path.slice(lastSlash + 1, i);
        lastSegmentLength = i - lastSlash - 1;
      }
      lastSlash = i;
      dots = 0;
    } else if (code === 46 /*.*/ && dots !== -1) {
      ++dots;
    } else {
      dots = -1;
    }
  }
  return res;
}

function _format(sep, pathObject) {
  var dir = pathObject.dir || pathObject.root;
  var base = pathObject.base || (pathObject.name || '') + (pathObject.ext || '');
  if (!dir) {
    return base;
  }
  if (dir === pathObject.root) {
    return dir + base;
  }
  return dir + sep + base;
}

var posix = {
  // path.resolve([from ...], to)
  resolve: function resolve() {
    var resolvedPath = '';
    var resolvedAbsolute = false;
    var cwd;

    for (var i = arguments.length - 1; i >= -1 && !resolvedAbsolute; i--) {
      var path;
      if (i >= 0)
        path = arguments[i];
      else {
        if (cwd === undefined)
          cwd = process.cwd();
        path = cwd;
      }

      assertPath(path);

      // Skip empty entries
      if (path.length === 0) {
        continue;
      }

      resolvedPath = path + '/' + resolvedPath;
      resolvedAbsolute = path.charCodeAt(0) === 47 /*/*/;
    }

    // At this point the path should be resolved to a full absolute path, but
    // handle relative paths to be safe (might happen when process.cwd() fails)

    // Normalize the path
    resolvedPath = normalizeStringPosix(resolvedPath, !resolvedAbsolute);

    if (resolvedAbsolute) {
      if (resolvedPath.length > 0)
        return '/' + resolvedPath;
      else
        return '/';
    } else if (resolvedPath.length > 0) {
      return resolvedPath;
    } else {
      return '.';
    }
  },

  normalize: function normalize(path) {
    assertPath(path);

    if (path.length === 0) return '.';

    var isAbsolute = path.charCodeAt(0) === 47 /*/*/;
    var trailingSeparator = path.charCodeAt(path.length - 1) === 47 /*/*/;

    // Normalize the path
    path = normalizeStringPosix(path, !isAbsolute);

    if (path.length === 0 && !isAbsolute) path = '.';
    if (path.length > 0 && trailingSeparator) path += '/';

    if (isAbsolute) return '/' + path;
    return path;
  },

  isAbsolute: function isAbsolute(path) {
    assertPath(path);
    return path.length > 0 && path.charCodeAt(0) === 47 /*/*/;
  },

  join: function join() {
    if (arguments.length === 0)
      return '.';
    var joined;
    for (var i = 0; i < arguments.length; ++i) {
      var arg = arguments[i];
      assertPath(arg);
      if (arg.length > 0) {
        if (joined === undefined)
          joined = arg;
        else
          joined += '/' + arg;
      }
    }
    if (joined === undefined)
      return '.';
    return posix.normalize(joined);
  },

  relative: function relative(from, to) {
    assertPath(from);
    assertPath(to);

    if (from === to) return '';

    from = posix.resolve(from);
    to = posix.resolve(to);

    if (from === to) return '';

    // Trim any leading backslashes
    var fromStart = 1;
    for (; fromStart < from.length; ++fromStart) {
      if (from.charCodeAt(fromStart) !== 47 /*/*/)
        break;
    }
    var fromEnd = from.length;
    var fromLen = fromEnd - fromStart;

    // Trim any leading backslashes
    var toStart = 1;
    for (; toStart < to.length; ++toStart) {
      if (to.charCodeAt(toStart) !== 47 /*/*/)
        break;
    }
    var toEnd = to.length;
    var toLen = toEnd - toStart;

    // Compare paths to find the longest common path from root
    var length = fromLen < toLen ? fromLen : toLen;
    var lastCommonSep = -1;
    var i = 0;
    for (; i <= length; ++i) {
      if (i === length) {
        if (toLen > length) {
          if (to.charCodeAt(toStart + i) === 47 /*/*/) {
            // We get here if `from` is the exact base path for `to`.
            // For example: from='/foo/bar'; to='/foo/bar/baz'
            return to.slice(toStart + i + 1);
          } else if (i === 0) {
            // We get here if `from` is the root
            // For example: from='/'; to='/foo'
            return to.slice(toStart + i);
          }
        } else if (fromLen > length) {
          if (from.charCodeAt(fromStart + i) === 47 /*/*/) {
            // We get here if `to` is the exact base path for `from`.
            // For example: from='/foo/bar/baz'; to='/foo/bar'
            lastCommonSep = i;
          } else if (i === 0) {
            // We get here if `to` is the root.
            // For example: from='/foo'; to='/'
            lastCommonSep = 0;
          }
        }
        break;
      }
      var fromCode = from.charCodeAt(fromStart + i);
      var toCode = to.charCodeAt(toStart + i);
      if (fromCode !== toCode)
        break;
      else if (fromCode === 47 /*/*/)
        lastCommonSep = i;
    }

    var out = '';
    // Generate the relative path based on the path difference between `to`
    // and `from`
    for (i = fromStart + lastCommonSep + 1; i <= fromEnd; ++i) {
      if (i === fromEnd || from.charCodeAt(i) === 47 /*/*/) {
        if (out.length === 0)
          out += '..';
        else
          out += '/..';
      }
    }

    // Lastly, append the rest of the destination (`to`) path that comes after
    // the common path parts
    if (out.length > 0)
      return out + to.slice(toStart + lastCommonSep);
    else {
      toStart += lastCommonSep;
      if (to.charCodeAt(toStart) === 47 /*/*/)
        ++toStart;
      return to.slice(toStart);
    }
  },

  _makeLong: function _makeLong(path) {
    return path;
  },

  dirname: function dirname(path) {
    assertPath(path);
    if (path.length === 0) return '.';
    var code = path.charCodeAt(0);
    var hasRoot = code === 47 /*/*/;
    var end = -1;
    var matchedSlash = true;
    for (var i = path.length - 1; i >= 1; --i) {
      code = path.charCodeAt(i);
      if (code === 47 /*/*/) {
          if (!matchedSlash) {
            end = i;
            break;
          }
        } else {
        // We saw the first non-path separator
        matchedSlash = false;
      }
    }

    if (end === -1) return hasRoot ? '/' : '.';
    if (hasRoot && end === 1) return '//';
    return path.slice(0, end);
  },

  basename: function basename(path, ext) {
    if (ext !== undefined && typeof ext !== 'string') throw new TypeError('"ext" argument must be a string');
    assertPath(path);

    var start = 0;
    var end = -1;
    var matchedSlash = true;
    var i;

    if (ext !== undefined && ext.length > 0 && ext.length <= path.length) {
      if (ext.length === path.length && ext === path) return '';
      var extIdx = ext.length - 1;
      var firstNonSlashEnd = -1;
      for (i = path.length - 1; i >= 0; --i) {
        var code = path.charCodeAt(i);
        if (code === 47 /*/*/) {
            // If we reached a path separator that was not part of a set of path
            // separators at the end of the string, stop now
            if (!matchedSlash) {
              start = i + 1;
              break;
            }
          } else {
          if (firstNonSlashEnd === -1) {
            // We saw the first non-path separator, remember this index in case
            // we need it if the extension ends up not matching
            matchedSlash = false;
            firstNonSlashEnd = i + 1;
          }
          if (extIdx >= 0) {
            // Try to match the explicit extension
            if (code === ext.charCodeAt(extIdx)) {
              if (--extIdx === -1) {
                // We matched the extension, so mark this as the end of our path
                // component
                end = i;
              }
            } else {
              // Extension does not match, so our result is the entire path
              // component
              extIdx = -1;
              end = firstNonSlashEnd;
            }
          }
        }
      }

      if (start === end) end = firstNonSlashEnd;else if (end === -1) end = path.length;
      return path.slice(start, end);
    } else {
      for (i = path.length - 1; i >= 0; --i) {
        if (path.charCodeAt(i) === 47 /*/*/) {
            // If we reached a path separator that was not part of a set of path
            // separators at the end of the string, stop now
            if (!matchedSlash) {
              start = i + 1;
              break;
            }
          } else if (end === -1) {
          // We saw the first non-path separator, mark this as the end of our
          // path component
          matchedSlash = false;
          end = i + 1;
        }
      }

      if (end === -1) return '';
      return path.slice(start, end);
    }
  },

  extname: function extname(path) {
    assertPath(path);
    var startDot = -1;
    var startPart = 0;
    var end = -1;
    var matchedSlash = true;
    // Track the state of characters (if any) we see before our first dot and
    // after any path separator we find
    var preDotState = 0;
    for (var i = path.length - 1; i >= 0; --i) {
      var code = path.charCodeAt(i);
      if (code === 47 /*/*/) {
          // If we reached a path separator that was not part of a set of path
          // separators at the end of the string, stop now
          if (!matchedSlash) {
            startPart = i + 1;
            break;
          }
          continue;
        }
      if (end === -1) {
        // We saw the first non-path separator, mark this as the end of our
        // extension
        matchedSlash = false;
        end = i + 1;
      }
      if (code === 46 /*.*/) {
          // If this is our first dot, mark it as the start of our extension
          if (startDot === -1)
            startDot = i;
          else if (preDotState !== 1)
            preDotState = 1;
      } else if (startDot !== -1) {
        // We saw a non-dot and non-path separator before our dot, so we should
        // have a good chance at having a non-empty extension
        preDotState = -1;
      }
    }

    if (startDot === -1 || end === -1 ||
        // We saw a non-dot character immediately before the dot
        preDotState === 0 ||
        // The (right-most) trimmed path component is exactly '..'
        preDotState === 1 && startDot === end - 1 && startDot === startPart + 1) {
      return '';
    }
    return path.slice(startDot, end);
  },

  format: function format(pathObject) {
    if (pathObject === null || typeof pathObject !== 'object') {
      throw new TypeError('The "pathObject" argument must be of type Object. Received type ' + typeof pathObject);
    }
    return _format('/', pathObject);
  },

  parse: function parse(path) {
    assertPath(path);

    var ret = { root: '', dir: '', base: '', ext: '', name: '' };
    if (path.length === 0) return ret;
    var code = path.charCodeAt(0);
    var isAbsolute = code === 47 /*/*/;
    var start;
    if (isAbsolute) {
      ret.root = '/';
      start = 1;
    } else {
      start = 0;
    }
    var startDot = -1;
    var startPart = 0;
    var end = -1;
    var matchedSlash = true;
    var i = path.length - 1;

    // Track the state of characters (if any) we see before our first dot and
    // after any path separator we find
    var preDotState = 0;

    // Get non-dir info
    for (; i >= start; --i) {
      code = path.charCodeAt(i);
      if (code === 47 /*/*/) {
          // If we reached a path separator that was not part of a set of path
          // separators at the end of the string, stop now
          if (!matchedSlash) {
            startPart = i + 1;
            break;
          }
          continue;
        }
      if (end === -1) {
        // We saw the first non-path separator, mark this as the end of our
        // extension
        matchedSlash = false;
        end = i + 1;
      }
      if (code === 46 /*.*/) {
          // If this is our first dot, mark it as the start of our extension
          if (startDot === -1) startDot = i;else if (preDotState !== 1) preDotState = 1;
        } else if (startDot !== -1) {
        // We saw a non-dot and non-path separator before our dot, so we should
        // have a good chance at having a non-empty extension
        preDotState = -1;
      }
    }

    if (startDot === -1 || end === -1 ||
    // We saw a non-dot character immediately before the dot
    preDotState === 0 ||
    // The (right-most) trimmed path component is exactly '..'
    preDotState === 1 && startDot === end - 1 && startDot === startPart + 1) {
      if (end !== -1) {
        if (startPart === 0 && isAbsolute) ret.base = ret.name = path.slice(1, end);else ret.base = ret.name = path.slice(startPart, end);
      }
    } else {
      if (startPart === 0 && isAbsolute) {
        ret.name = path.slice(1, startDot);
        ret.base = path.slice(1, end);
      } else {
        ret.name = path.slice(startPart, startDot);
        ret.base = path.slice(startPart, end);
      }
      ret.ext = path.slice(startDot, end);
    }

    if (startPart > 0) ret.dir = path.slice(0, startPart - 1);else if (isAbsolute) ret.dir = '/';

    return ret;
  },

  sep: '/',
  delimiter: ':',
  win32: null,
  posix: null
};

posix.posix = posix;

module.exports = posix;

}).call(this)}).call(this,require('_process'))
},{"_process":30}],30:[function(require,module,exports){
// shim for using process in browser
var process = module.exports = {};

// cached from whatever global is present so that test runners that stub it
// don't break things.  But we need to wrap it in a try catch in case it is
// wrapped in strict mode code which doesn't define any globals.  It's inside a
// function because try/catches deoptimize in certain engines.

var cachedSetTimeout;
var cachedClearTimeout;

function defaultSetTimout() {
    throw new Error('setTimeout has not been defined');
}
function defaultClearTimeout () {
    throw new Error('clearTimeout has not been defined');
}
(function () {
    try {
        if (typeof setTimeout === 'function') {
            cachedSetTimeout = setTimeout;
        } else {
            cachedSetTimeout = defaultSetTimout;
        }
    } catch (e) {
        cachedSetTimeout = defaultSetTimout;
    }
    try {
        if (typeof clearTimeout === 'function') {
            cachedClearTimeout = clearTimeout;
        } else {
            cachedClearTimeout = defaultClearTimeout;
        }
    } catch (e) {
        cachedClearTimeout = defaultClearTimeout;
    }
} ())
function runTimeout(fun) {
    if (cachedSetTimeout === setTimeout) {
        //normal enviroments in sane situations
        return setTimeout(fun, 0);
    }
    // if setTimeout wasn't available but was latter defined
    if ((cachedSetTimeout === defaultSetTimout || !cachedSetTimeout) && setTimeout) {
        cachedSetTimeout = setTimeout;
        return setTimeout(fun, 0);
    }
    try {
        // when when somebody has screwed with setTimeout but no I.E. maddness
        return cachedSetTimeout(fun, 0);
    } catch(e){
        try {
            // When we are in I.E. but the script has been evaled so I.E. doesn't trust the global object when called normally
            return cachedSetTimeout.call(null, fun, 0);
        } catch(e){
            // same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error
            return cachedSetTimeout.call(this, fun, 0);
        }
    }


}
function runClearTimeout(marker) {
    if (cachedClearTimeout === clearTimeout) {
        //normal enviroments in sane situations
        return clearTimeout(marker);
    }
    // if clearTimeout wasn't available but was latter defined
    if ((cachedClearTimeout === defaultClearTimeout || !cachedClearTimeout) && clearTimeout) {
        cachedClearTimeout = clearTimeout;
        return clearTimeout(marker);
    }
    try {
        // when when somebody has screwed with setTimeout but no I.E. maddness
        return cachedClearTimeout(marker);
    } catch (e){
        try {
            // When we are in I.E. but the script has been evaled so I.E. doesn't  trust the global object when called normally
            return cachedClearTimeout.call(null, marker);
        } catch (e){
            // same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error.
            // Some versions of I.E. have different rules for clearTimeout vs setTimeout
            return cachedClearTimeout.call(this, marker);
        }
    }



}
var queue = [];
var draining = false;
var currentQueue;
var queueIndex = -1;

function cleanUpNextTick() {
    if (!draining || !currentQueue) {
        return;
    }
    draining = false;
    if (currentQueue.length) {
        queue = currentQueue.concat(queue);
    } else {
        queueIndex = -1;
    }
    if (queue.length) {
        drainQueue();
    }
}

function drainQueue() {
    if (draining) {
        return;
    }
    var timeout = runTimeout(cleanUpNextTick);
    draining = true;

    var len = queue.length;
    while(len) {
        currentQueue = queue;
        queue = [];
        while (++queueIndex < len) {
            if (currentQueue) {
                currentQueue[queueIndex].run();
            }
        }
        queueIndex = -1;
        len = queue.length;
    }
    currentQueue = null;
    draining = false;
    runClearTimeout(timeout);
}

process.nextTick = function (fun) {
    var args = new Array(arguments.length - 1);
    if (arguments.length > 1) {
        for (var i = 1; i < arguments.length; i++) {
            args[i - 1] = arguments[i];
        }
    }
    queue.push(new Item(fun, args));
    if (queue.length === 1 && !draining) {
        runTimeout(drainQueue);
    }
};

// v8 likes predictible objects
function Item(fun, array) {
    this.fun = fun;
    this.array = array;
}
Item.prototype.run = function () {
    this.fun.apply(null, this.array);
};
process.title = 'browser';
process.browser = true;
process.env = {};
process.argv = [];
process.version = ''; // empty string to avoid regexp issues
process.versions = {};

function noop() {}

process.on = noop;
process.addListener = noop;
process.once = noop;
process.off = noop;
process.removeListener = noop;
process.removeAllListeners = noop;
process.emit = noop;
process.prependListener = noop;
process.prependOnceListener = noop;

process.listeners = function (name) { return [] }

process.binding = function (name) {
    throw new Error('process.binding is not supported');
};

process.cwd = function () { return '/' };
process.chdir = function (dir) {
    throw new Error('process.chdir is not supported');
};
process.umask = function() { return 0; };

},{}],31:[function(require,module,exports){
/*! safe-buffer. MIT License. Feross Aboukhadijeh <https://feross.org/opensource> */
/* eslint-disable node/no-deprecated-api */
var buffer = require('buffer')
var Buffer = buffer.Buffer

// alternative to using Object.keys for old browsers
function copyProps (src, dst) {
  for (var key in src) {
    dst[key] = src[key]
  }
}
if (Buffer.from && Buffer.alloc && Buffer.allocUnsafe && Buffer.allocUnsafeSlow) {
  module.exports = buffer
} else {
  // Copy properties from require('buffer')
  copyProps(buffer, exports)
  exports.Buffer = SafeBuffer
}

function SafeBuffer (arg, encodingOrOffset, length) {
  return Buffer(arg, encodingOrOffset, length)
}

SafeBuffer.prototype = Object.create(Buffer.prototype)

// Copy static methods from Buffer
copyProps(Buffer, SafeBuffer)

SafeBuffer.from = function (arg, encodingOrOffset, length) {
  if (typeof arg === 'number') {
    throw new TypeError('Argument must not be a number')
  }
  return Buffer(arg, encodingOrOffset, length)
}

SafeBuffer.alloc = function (size, fill, encoding) {
  if (typeof size !== 'number') {
    throw new TypeError('Argument must be a number')
  }
  var buf = Buffer(size)
  if (fill !== undefined) {
    if (typeof encoding === 'string') {
      buf.fill(fill, encoding)
    } else {
      buf.fill(fill)
    }
  } else {
    buf.fill(0)
  }
  return buf
}

SafeBuffer.allocUnsafe = function (size) {
  if (typeof size !== 'number') {
    throw new TypeError('Argument must be a number')
  }
  return Buffer(size)
}

SafeBuffer.allocUnsafeSlow = function (size) {
  if (typeof size !== 'number') {
    throw new TypeError('Argument must be a number')
  }
  return buffer.SlowBuffer(size)
}

},{"buffer":25}],32:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

module.exports = Stream;

var EE = require('events').EventEmitter;
var inherits = require('inherits');

inherits(Stream, EE);
Stream.Readable = require('readable-stream/lib/_stream_readable.js');
Stream.Writable = require('readable-stream/lib/_stream_writable.js');
Stream.Duplex = require('readable-stream/lib/_stream_duplex.js');
Stream.Transform = require('readable-stream/lib/_stream_transform.js');
Stream.PassThrough = require('readable-stream/lib/_stream_passthrough.js');
Stream.finished = require('readable-stream/lib/internal/streams/end-of-stream.js')
Stream.pipeline = require('readable-stream/lib/internal/streams/pipeline.js')

// Backwards-compat with node 0.4.x
Stream.Stream = Stream;



// old-style streams.  Note that the pipe method (the only relevant
// part of this class) is overridden in the Readable class.

function Stream() {
  EE.call(this);
}

Stream.prototype.pipe = function(dest, options) {
  var source = this;

  function ondata(chunk) {
    if (dest.writable) {
      if (false === dest.write(chunk) && source.pause) {
        source.pause();
      }
    }
  }

  source.on('data', ondata);

  function ondrain() {
    if (source.readable && source.resume) {
      source.resume();
    }
  }

  dest.on('drain', ondrain);

  // If the 'end' option is not supplied, dest.end() will be called when
  // source gets the 'end' or 'close' events.  Only dest.end() once.
  if (!dest._isStdio && (!options || options.end !== false)) {
    source.on('end', onend);
    source.on('close', onclose);
  }

  var didOnEnd = false;
  function onend() {
    if (didOnEnd) return;
    didOnEnd = true;

    dest.end();
  }


  function onclose() {
    if (didOnEnd) return;
    didOnEnd = true;

    if (typeof dest.destroy === 'function') dest.destroy();
  }

  // don't leave dangling pipes when there are errors.
  function onerror(er) {
    cleanup();
    if (EE.listenerCount(this, 'error') === 0) {
      throw er; // Unhandled stream error in pipe.
    }
  }

  source.on('error', onerror);
  dest.on('error', onerror);

  // remove all the event listeners that were added.
  function cleanup() {
    source.removeListener('data', ondata);
    dest.removeListener('drain', ondrain);

    source.removeListener('end', onend);
    source.removeListener('close', onclose);

    source.removeListener('error', onerror);
    dest.removeListener('error', onerror);

    source.removeListener('end', cleanup);
    source.removeListener('close', cleanup);

    dest.removeListener('close', cleanup);
  }

  source.on('end', cleanup);
  source.on('close', cleanup);

  dest.on('close', cleanup);

  dest.emit('pipe', source);

  // Allow for unix-like usage: A.pipe(B).pipe(C)
  return dest;
};

},{"events":26,"inherits":28,"readable-stream/lib/_stream_duplex.js":34,"readable-stream/lib/_stream_passthrough.js":35,"readable-stream/lib/_stream_readable.js":36,"readable-stream/lib/_stream_transform.js":37,"readable-stream/lib/_stream_writable.js":38,"readable-stream/lib/internal/streams/end-of-stream.js":42,"readable-stream/lib/internal/streams/pipeline.js":44}],33:[function(require,module,exports){
'use strict';

function _inheritsLoose(subClass, superClass) { subClass.prototype = Object.create(superClass.prototype); subClass.prototype.constructor = subClass; subClass.__proto__ = superClass; }

var codes = {};

function createErrorType(code, message, Base) {
  if (!Base) {
    Base = Error;
  }

  function getMessage(arg1, arg2, arg3) {
    if (typeof message === 'string') {
      return message;
    } else {
      return message(arg1, arg2, arg3);
    }
  }

  var NodeError =
  /*#__PURE__*/
  function (_Base) {
    _inheritsLoose(NodeError, _Base);

    function NodeError(arg1, arg2, arg3) {
      return _Base.call(this, getMessage(arg1, arg2, arg3)) || this;
    }

    return NodeError;
  }(Base);

  NodeError.prototype.name = Base.name;
  NodeError.prototype.code = code;
  codes[code] = NodeError;
} // https://github.com/nodejs/node/blob/v10.8.0/lib/internal/errors.js


function oneOf(expected, thing) {
  if (Array.isArray(expected)) {
    var len = expected.length;
    expected = expected.map(function (i) {
      return String(i);
    });

    if (len > 2) {
      return "one of ".concat(thing, " ").concat(expected.slice(0, len - 1).join(', '), ", or ") + expected[len - 1];
    } else if (len === 2) {
      return "one of ".concat(thing, " ").concat(expected[0], " or ").concat(expected[1]);
    } else {
      return "of ".concat(thing, " ").concat(expected[0]);
    }
  } else {
    return "of ".concat(thing, " ").concat(String(expected));
  }
} // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith


function startsWith(str, search, pos) {
  return str.substr(!pos || pos < 0 ? 0 : +pos, search.length) === search;
} // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith


function endsWith(str, search, this_len) {
  if (this_len === undefined || this_len > str.length) {
    this_len = str.length;
  }

  return str.substring(this_len - search.length, this_len) === search;
} // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes


function includes(str, search, start) {
  if (typeof start !== 'number') {
    start = 0;
  }

  if (start + search.length > str.length) {
    return false;
  } else {
    return str.indexOf(search, start) !== -1;
  }
}

createErrorType('ERR_INVALID_OPT_VALUE', function (name, value) {
  return 'The value "' + value + '" is invalid for option "' + name + '"';
}, TypeError);
createErrorType('ERR_INVALID_ARG_TYPE', function (name, expected, actual) {
  // determiner: 'must be' or 'must not be'
  var determiner;

  if (typeof expected === 'string' && startsWith(expected, 'not ')) {
    determiner = 'must not be';
    expected = expected.replace(/^not /, '');
  } else {
    determiner = 'must be';
  }

  var msg;

  if (endsWith(name, ' argument')) {
    // For cases like 'first argument'
    msg = "The ".concat(name, " ").concat(determiner, " ").concat(oneOf(expected, 'type'));
  } else {
    var type = includes(name, '.') ? 'property' : 'argument';
    msg = "The \"".concat(name, "\" ").concat(type, " ").concat(determiner, " ").concat(oneOf(expected, 'type'));
  }

  msg += ". Received type ".concat(typeof actual);
  return msg;
}, TypeError);
createErrorType('ERR_STREAM_PUSH_AFTER_EOF', 'stream.push() after EOF');
createErrorType('ERR_METHOD_NOT_IMPLEMENTED', function (name) {
  return 'The ' + name + ' method is not implemented';
});
createErrorType('ERR_STREAM_PREMATURE_CLOSE', 'Premature close');
createErrorType('ERR_STREAM_DESTROYED', function (name) {
  return 'Cannot call ' + name + ' after a stream was destroyed';
});
createErrorType('ERR_MULTIPLE_CALLBACK', 'Callback called multiple times');
createErrorType('ERR_STREAM_CANNOT_PIPE', 'Cannot pipe, not readable');
createErrorType('ERR_STREAM_WRITE_AFTER_END', 'write after end');
createErrorType('ERR_STREAM_NULL_VALUES', 'May not write null values to stream', TypeError);
createErrorType('ERR_UNKNOWN_ENCODING', function (arg) {
  return 'Unknown encoding: ' + arg;
}, TypeError);
createErrorType('ERR_STREAM_UNSHIFT_AFTER_END_EVENT', 'stream.unshift() after end event');
module.exports.codes = codes;

},{}],34:[function(require,module,exports){
(function (process){(function (){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// a duplex stream is just a stream that is both readable and writable.
// Since JS doesn't have multiple prototypal inheritance, this class
// prototypally inherits from Readable, and then parasitically from
// Writable.
'use strict';
/*<replacement>*/

var objectKeys = Object.keys || function (obj) {
  var keys = [];

  for (var key in obj) {
    keys.push(key);
  }

  return keys;
};
/*</replacement>*/


module.exports = Duplex;

var Readable = require('./_stream_readable');

var Writable = require('./_stream_writable');

require('inherits')(Duplex, Readable);

{
  // Allow the keys array to be GC'ed.
  var keys = objectKeys(Writable.prototype);

  for (var v = 0; v < keys.length; v++) {
    var method = keys[v];
    if (!Duplex.prototype[method]) Duplex.prototype[method] = Writable.prototype[method];
  }
}

function Duplex(options) {
  if (!(this instanceof Duplex)) return new Duplex(options);
  Readable.call(this, options);
  Writable.call(this, options);
  this.allowHalfOpen = true;

  if (options) {
    if (options.readable === false) this.readable = false;
    if (options.writable === false) this.writable = false;

    if (options.allowHalfOpen === false) {
      this.allowHalfOpen = false;
      this.once('end', onend);
    }
  }
}

Object.defineProperty(Duplex.prototype, 'writableHighWaterMark', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._writableState.highWaterMark;
  }
});
Object.defineProperty(Duplex.prototype, 'writableBuffer', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._writableState && this._writableState.getBuffer();
  }
});
Object.defineProperty(Duplex.prototype, 'writableLength', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._writableState.length;
  }
}); // the no-half-open enforcer

function onend() {
  // If the writable side ended, then we're ok.
  if (this._writableState.ended) return; // no more data can be written.
  // But allow more writes to happen in this tick.

  process.nextTick(onEndNT, this);
}

function onEndNT(self) {
  self.end();
}

Object.defineProperty(Duplex.prototype, 'destroyed', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    if (this._readableState === undefined || this._writableState === undefined) {
      return false;
    }

    return this._readableState.destroyed && this._writableState.destroyed;
  },
  set: function set(value) {
    // we ignore the value if the stream
    // has not been initialized yet
    if (this._readableState === undefined || this._writableState === undefined) {
      return;
    } // backward compatibility, the user is explicitly
    // managing destroyed


    this._readableState.destroyed = value;
    this._writableState.destroyed = value;
  }
});
}).call(this)}).call(this,require('_process'))
},{"./_stream_readable":36,"./_stream_writable":38,"_process":30,"inherits":28}],35:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// a passthrough stream.
// basically just the most minimal sort of Transform stream.
// Every written chunk gets output as-is.
'use strict';

module.exports = PassThrough;

var Transform = require('./_stream_transform');

require('inherits')(PassThrough, Transform);

function PassThrough(options) {
  if (!(this instanceof PassThrough)) return new PassThrough(options);
  Transform.call(this, options);
}

PassThrough.prototype._transform = function (chunk, encoding, cb) {
  cb(null, chunk);
};
},{"./_stream_transform":37,"inherits":28}],36:[function(require,module,exports){
(function (process,global){(function (){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
'use strict';

module.exports = Readable;
/*<replacement>*/

var Duplex;
/*</replacement>*/

Readable.ReadableState = ReadableState;
/*<replacement>*/

var EE = require('events').EventEmitter;

var EElistenerCount = function EElistenerCount(emitter, type) {
  return emitter.listeners(type).length;
};
/*</replacement>*/

/*<replacement>*/


var Stream = require('./internal/streams/stream');
/*</replacement>*/


var Buffer = require('buffer').Buffer;

var OurUint8Array = global.Uint8Array || function () {};

function _uint8ArrayToBuffer(chunk) {
  return Buffer.from(chunk);
}

function _isUint8Array(obj) {
  return Buffer.isBuffer(obj) || obj instanceof OurUint8Array;
}
/*<replacement>*/


var debugUtil = require('util');

var debug;

if (debugUtil && debugUtil.debuglog) {
  debug = debugUtil.debuglog('stream');
} else {
  debug = function debug() {};
}
/*</replacement>*/


var BufferList = require('./internal/streams/buffer_list');

var destroyImpl = require('./internal/streams/destroy');

var _require = require('./internal/streams/state'),
    getHighWaterMark = _require.getHighWaterMark;

var _require$codes = require('../errors').codes,
    ERR_INVALID_ARG_TYPE = _require$codes.ERR_INVALID_ARG_TYPE,
    ERR_STREAM_PUSH_AFTER_EOF = _require$codes.ERR_STREAM_PUSH_AFTER_EOF,
    ERR_METHOD_NOT_IMPLEMENTED = _require$codes.ERR_METHOD_NOT_IMPLEMENTED,
    ERR_STREAM_UNSHIFT_AFTER_END_EVENT = _require$codes.ERR_STREAM_UNSHIFT_AFTER_END_EVENT; // Lazy loaded to improve the startup performance.


var StringDecoder;
var createReadableStreamAsyncIterator;
var from;

require('inherits')(Readable, Stream);

var errorOrDestroy = destroyImpl.errorOrDestroy;
var kProxyEvents = ['error', 'close', 'destroy', 'pause', 'resume'];

function prependListener(emitter, event, fn) {
  // Sadly this is not cacheable as some libraries bundle their own
  // event emitter implementation with them.
  if (typeof emitter.prependListener === 'function') return emitter.prependListener(event, fn); // This is a hack to make sure that our error handler is attached before any
  // userland ones.  NEVER DO THIS. This is here only because this code needs
  // to continue to work with older versions of Node.js that do not include
  // the prependListener() method. The goal is to eventually remove this hack.

  if (!emitter._events || !emitter._events[event]) emitter.on(event, fn);else if (Array.isArray(emitter._events[event])) emitter._events[event].unshift(fn);else emitter._events[event] = [fn, emitter._events[event]];
}

function ReadableState(options, stream, isDuplex) {
  Duplex = Duplex || require('./_stream_duplex');
  options = options || {}; // Duplex streams are both readable and writable, but share
  // the same options object.
  // However, some cases require setting options to different
  // values for the readable and the writable sides of the duplex stream.
  // These options can be provided separately as readableXXX and writableXXX.

  if (typeof isDuplex !== 'boolean') isDuplex = stream instanceof Duplex; // object stream flag. Used to make read(n) ignore n and to
  // make all the buffer merging and length checks go away

  this.objectMode = !!options.objectMode;
  if (isDuplex) this.objectMode = this.objectMode || !!options.readableObjectMode; // the point at which it stops calling _read() to fill the buffer
  // Note: 0 is a valid value, means "don't call _read preemptively ever"

  this.highWaterMark = getHighWaterMark(this, options, 'readableHighWaterMark', isDuplex); // A linked list is used to store data chunks instead of an array because the
  // linked list can remove elements from the beginning faster than
  // array.shift()

  this.buffer = new BufferList();
  this.length = 0;
  this.pipes = null;
  this.pipesCount = 0;
  this.flowing = null;
  this.ended = false;
  this.endEmitted = false;
  this.reading = false; // a flag to be able to tell if the event 'readable'/'data' is emitted
  // immediately, or on a later tick.  We set this to true at first, because
  // any actions that shouldn't happen until "later" should generally also
  // not happen before the first read call.

  this.sync = true; // whenever we return null, then we set a flag to say
  // that we're awaiting a 'readable' event emission.

  this.needReadable = false;
  this.emittedReadable = false;
  this.readableListening = false;
  this.resumeScheduled = false;
  this.paused = true; // Should close be emitted on destroy. Defaults to true.

  this.emitClose = options.emitClose !== false; // Should .destroy() be called after 'end' (and potentially 'finish')

  this.autoDestroy = !!options.autoDestroy; // has it been destroyed

  this.destroyed = false; // Crypto is kind of old and crusty.  Historically, its default string
  // encoding is 'binary' so we have to make this configurable.
  // Everything else in the universe uses 'utf8', though.

  this.defaultEncoding = options.defaultEncoding || 'utf8'; // the number of writers that are awaiting a drain event in .pipe()s

  this.awaitDrain = 0; // if true, a maybeReadMore has been scheduled

  this.readingMore = false;
  this.decoder = null;
  this.encoding = null;

  if (options.encoding) {
    if (!StringDecoder) StringDecoder = require('string_decoder/').StringDecoder;
    this.decoder = new StringDecoder(options.encoding);
    this.encoding = options.encoding;
  }
}

function Readable(options) {
  Duplex = Duplex || require('./_stream_duplex');
  if (!(this instanceof Readable)) return new Readable(options); // Checking for a Stream.Duplex instance is faster here instead of inside
  // the ReadableState constructor, at least with V8 6.5

  var isDuplex = this instanceof Duplex;
  this._readableState = new ReadableState(options, this, isDuplex); // legacy

  this.readable = true;

  if (options) {
    if (typeof options.read === 'function') this._read = options.read;
    if (typeof options.destroy === 'function') this._destroy = options.destroy;
  }

  Stream.call(this);
}

Object.defineProperty(Readable.prototype, 'destroyed', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    if (this._readableState === undefined) {
      return false;
    }

    return this._readableState.destroyed;
  },
  set: function set(value) {
    // we ignore the value if the stream
    // has not been initialized yet
    if (!this._readableState) {
      return;
    } // backward compatibility, the user is explicitly
    // managing destroyed


    this._readableState.destroyed = value;
  }
});
Readable.prototype.destroy = destroyImpl.destroy;
Readable.prototype._undestroy = destroyImpl.undestroy;

Readable.prototype._destroy = function (err, cb) {
  cb(err);
}; // Manually shove something into the read() buffer.
// This returns true if the highWaterMark has not been hit yet,
// similar to how Writable.write() returns true if you should
// write() some more.


Readable.prototype.push = function (chunk, encoding) {
  var state = this._readableState;
  var skipChunkCheck;

  if (!state.objectMode) {
    if (typeof chunk === 'string') {
      encoding = encoding || state.defaultEncoding;

      if (encoding !== state.encoding) {
        chunk = Buffer.from(chunk, encoding);
        encoding = '';
      }

      skipChunkCheck = true;
    }
  } else {
    skipChunkCheck = true;
  }

  return readableAddChunk(this, chunk, encoding, false, skipChunkCheck);
}; // Unshift should *always* be something directly out of read()


Readable.prototype.unshift = function (chunk) {
  return readableAddChunk(this, chunk, null, true, false);
};

function readableAddChunk(stream, chunk, encoding, addToFront, skipChunkCheck) {
  debug('readableAddChunk', chunk);
  var state = stream._readableState;

  if (chunk === null) {
    state.reading = false;
    onEofChunk(stream, state);
  } else {
    var er;
    if (!skipChunkCheck) er = chunkInvalid(state, chunk);

    if (er) {
      errorOrDestroy(stream, er);
    } else if (state.objectMode || chunk && chunk.length > 0) {
      if (typeof chunk !== 'string' && !state.objectMode && Object.getPrototypeOf(chunk) !== Buffer.prototype) {
        chunk = _uint8ArrayToBuffer(chunk);
      }

      if (addToFront) {
        if (state.endEmitted) errorOrDestroy(stream, new ERR_STREAM_UNSHIFT_AFTER_END_EVENT());else addChunk(stream, state, chunk, true);
      } else if (state.ended) {
        errorOrDestroy(stream, new ERR_STREAM_PUSH_AFTER_EOF());
      } else if (state.destroyed) {
        return false;
      } else {
        state.reading = false;

        if (state.decoder && !encoding) {
          chunk = state.decoder.write(chunk);
          if (state.objectMode || chunk.length !== 0) addChunk(stream, state, chunk, false);else maybeReadMore(stream, state);
        } else {
          addChunk(stream, state, chunk, false);
        }
      }
    } else if (!addToFront) {
      state.reading = false;
      maybeReadMore(stream, state);
    }
  } // We can push more data if we are below the highWaterMark.
  // Also, if we have no data yet, we can stand some more bytes.
  // This is to work around cases where hwm=0, such as the repl.


  return !state.ended && (state.length < state.highWaterMark || state.length === 0);
}

function addChunk(stream, state, chunk, addToFront) {
  if (state.flowing && state.length === 0 && !state.sync) {
    state.awaitDrain = 0;
    stream.emit('data', chunk);
  } else {
    // update the buffer info.
    state.length += state.objectMode ? 1 : chunk.length;
    if (addToFront) state.buffer.unshift(chunk);else state.buffer.push(chunk);
    if (state.needReadable) emitReadable(stream);
  }

  maybeReadMore(stream, state);
}

function chunkInvalid(state, chunk) {
  var er;

  if (!_isUint8Array(chunk) && typeof chunk !== 'string' && chunk !== undefined && !state.objectMode) {
    er = new ERR_INVALID_ARG_TYPE('chunk', ['string', 'Buffer', 'Uint8Array'], chunk);
  }

  return er;
}

Readable.prototype.isPaused = function () {
  return this._readableState.flowing === false;
}; // backwards compatibility.


Readable.prototype.setEncoding = function (enc) {
  if (!StringDecoder) StringDecoder = require('string_decoder/').StringDecoder;
  var decoder = new StringDecoder(enc);
  this._readableState.decoder = decoder; // If setEncoding(null), decoder.encoding equals utf8

  this._readableState.encoding = this._readableState.decoder.encoding; // Iterate over current buffer to convert already stored Buffers:

  var p = this._readableState.buffer.head;
  var content = '';

  while (p !== null) {
    content += decoder.write(p.data);
    p = p.next;
  }

  this._readableState.buffer.clear();

  if (content !== '') this._readableState.buffer.push(content);
  this._readableState.length = content.length;
  return this;
}; // Don't raise the hwm > 1GB


var MAX_HWM = 0x40000000;

function computeNewHighWaterMark(n) {
  if (n >= MAX_HWM) {
    // TODO(ronag): Throw ERR_VALUE_OUT_OF_RANGE.
    n = MAX_HWM;
  } else {
    // Get the next highest power of 2 to prevent increasing hwm excessively in
    // tiny amounts
    n--;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    n++;
  }

  return n;
} // This function is designed to be inlinable, so please take care when making
// changes to the function body.


function howMuchToRead(n, state) {
  if (n <= 0 || state.length === 0 && state.ended) return 0;
  if (state.objectMode) return 1;

  if (n !== n) {
    // Only flow one buffer at a time
    if (state.flowing && state.length) return state.buffer.head.data.length;else return state.length;
  } // If we're asking for more than the current hwm, then raise the hwm.


  if (n > state.highWaterMark) state.highWaterMark = computeNewHighWaterMark(n);
  if (n <= state.length) return n; // Don't have enough

  if (!state.ended) {
    state.needReadable = true;
    return 0;
  }

  return state.length;
} // you can override either this method, or the async _read(n) below.


Readable.prototype.read = function (n) {
  debug('read', n);
  n = parseInt(n, 10);
  var state = this._readableState;
  var nOrig = n;
  if (n !== 0) state.emittedReadable = false; // if we're doing read(0) to trigger a readable event, but we
  // already have a bunch of data in the buffer, then just trigger
  // the 'readable' event and move on.

  if (n === 0 && state.needReadable && ((state.highWaterMark !== 0 ? state.length >= state.highWaterMark : state.length > 0) || state.ended)) {
    debug('read: emitReadable', state.length, state.ended);
    if (state.length === 0 && state.ended) endReadable(this);else emitReadable(this);
    return null;
  }

  n = howMuchToRead(n, state); // if we've ended, and we're now clear, then finish it up.

  if (n === 0 && state.ended) {
    if (state.length === 0) endReadable(this);
    return null;
  } // All the actual chunk generation logic needs to be
  // *below* the call to _read.  The reason is that in certain
  // synthetic stream cases, such as passthrough streams, _read
  // may be a completely synchronous operation which may change
  // the state of the read buffer, providing enough data when
  // before there was *not* enough.
  //
  // So, the steps are:
  // 1. Figure out what the state of things will be after we do
  // a read from the buffer.
  //
  // 2. If that resulting state will trigger a _read, then call _read.
  // Note that this may be asynchronous, or synchronous.  Yes, it is
  // deeply ugly to write APIs this way, but that still doesn't mean
  // that the Readable class should behave improperly, as streams are
  // designed to be sync/async agnostic.
  // Take note if the _read call is sync or async (ie, if the read call
  // has returned yet), so that we know whether or not it's safe to emit
  // 'readable' etc.
  //
  // 3. Actually pull the requested chunks out of the buffer and return.
  // if we need a readable event, then we need to do some reading.


  var doRead = state.needReadable;
  debug('need readable', doRead); // if we currently have less than the highWaterMark, then also read some

  if (state.length === 0 || state.length - n < state.highWaterMark) {
    doRead = true;
    debug('length less than watermark', doRead);
  } // however, if we've ended, then there's no point, and if we're already
  // reading, then it's unnecessary.


  if (state.ended || state.reading) {
    doRead = false;
    debug('reading or ended', doRead);
  } else if (doRead) {
    debug('do read');
    state.reading = true;
    state.sync = true; // if the length is currently zero, then we *need* a readable event.

    if (state.length === 0) state.needReadable = true; // call internal read method

    this._read(state.highWaterMark);

    state.sync = false; // If _read pushed data synchronously, then `reading` will be false,
    // and we need to re-evaluate how much data we can return to the user.

    if (!state.reading) n = howMuchToRead(nOrig, state);
  }

  var ret;
  if (n > 0) ret = fromList(n, state);else ret = null;

  if (ret === null) {
    state.needReadable = state.length <= state.highWaterMark;
    n = 0;
  } else {
    state.length -= n;
    state.awaitDrain = 0;
  }

  if (state.length === 0) {
    // If we have nothing in the buffer, then we want to know
    // as soon as we *do* get something into the buffer.
    if (!state.ended) state.needReadable = true; // If we tried to read() past the EOF, then emit end on the next tick.

    if (nOrig !== n && state.ended) endReadable(this);
  }

  if (ret !== null) this.emit('data', ret);
  return ret;
};

function onEofChunk(stream, state) {
  debug('onEofChunk');
  if (state.ended) return;

  if (state.decoder) {
    var chunk = state.decoder.end();

    if (chunk && chunk.length) {
      state.buffer.push(chunk);
      state.length += state.objectMode ? 1 : chunk.length;
    }
  }

  state.ended = true;

  if (state.sync) {
    // if we are sync, wait until next tick to emit the data.
    // Otherwise we risk emitting data in the flow()
    // the readable code triggers during a read() call
    emitReadable(stream);
  } else {
    // emit 'readable' now to make sure it gets picked up.
    state.needReadable = false;

    if (!state.emittedReadable) {
      state.emittedReadable = true;
      emitReadable_(stream);
    }
  }
} // Don't emit readable right away in sync mode, because this can trigger
// another read() call => stack overflow.  This way, it might trigger
// a nextTick recursion warning, but that's not so bad.


function emitReadable(stream) {
  var state = stream._readableState;
  debug('emitReadable', state.needReadable, state.emittedReadable);
  state.needReadable = false;

  if (!state.emittedReadable) {
    debug('emitReadable', state.flowing);
    state.emittedReadable = true;
    process.nextTick(emitReadable_, stream);
  }
}

function emitReadable_(stream) {
  var state = stream._readableState;
  debug('emitReadable_', state.destroyed, state.length, state.ended);

  if (!state.destroyed && (state.length || state.ended)) {
    stream.emit('readable');
    state.emittedReadable = false;
  } // The stream needs another readable event if
  // 1. It is not flowing, as the flow mechanism will take
  //    care of it.
  // 2. It is not ended.
  // 3. It is below the highWaterMark, so we can schedule
  //    another readable later.


  state.needReadable = !state.flowing && !state.ended && state.length <= state.highWaterMark;
  flow(stream);
} // at this point, the user has presumably seen the 'readable' event,
// and called read() to consume some data.  that may have triggered
// in turn another _read(n) call, in which case reading = true if
// it's in progress.
// However, if we're not ended, or reading, and the length < hwm,
// then go ahead and try to read some more preemptively.


function maybeReadMore(stream, state) {
  if (!state.readingMore) {
    state.readingMore = true;
    process.nextTick(maybeReadMore_, stream, state);
  }
}

function maybeReadMore_(stream, state) {
  // Attempt to read more data if we should.
  //
  // The conditions for reading more data are (one of):
  // - Not enough data buffered (state.length < state.highWaterMark). The loop
  //   is responsible for filling the buffer with enough data if such data
  //   is available. If highWaterMark is 0 and we are not in the flowing mode
  //   we should _not_ attempt to buffer any extra data. We'll get more data
  //   when the stream consumer calls read() instead.
  // - No data in the buffer, and the stream is in flowing mode. In this mode
  //   the loop below is responsible for ensuring read() is called. Failing to
  //   call read here would abort the flow and there's no other mechanism for
  //   continuing the flow if the stream consumer has just subscribed to the
  //   'data' event.
  //
  // In addition to the above conditions to keep reading data, the following
  // conditions prevent the data from being read:
  // - The stream has ended (state.ended).
  // - There is already a pending 'read' operation (state.reading). This is a
  //   case where the the stream has called the implementation defined _read()
  //   method, but they are processing the call asynchronously and have _not_
  //   called push() with new data. In this case we skip performing more
  //   read()s. The execution ends in this method again after the _read() ends
  //   up calling push() with more data.
  while (!state.reading && !state.ended && (state.length < state.highWaterMark || state.flowing && state.length === 0)) {
    var len = state.length;
    debug('maybeReadMore read 0');
    stream.read(0);
    if (len === state.length) // didn't get any data, stop spinning.
      break;
  }

  state.readingMore = false;
} // abstract method.  to be overridden in specific implementation classes.
// call cb(er, data) where data is <= n in length.
// for virtual (non-string, non-buffer) streams, "length" is somewhat
// arbitrary, and perhaps not very meaningful.


Readable.prototype._read = function (n) {
  errorOrDestroy(this, new ERR_METHOD_NOT_IMPLEMENTED('_read()'));
};

Readable.prototype.pipe = function (dest, pipeOpts) {
  var src = this;
  var state = this._readableState;

  switch (state.pipesCount) {
    case 0:
      state.pipes = dest;
      break;

    case 1:
      state.pipes = [state.pipes, dest];
      break;

    default:
      state.pipes.push(dest);
      break;
  }

  state.pipesCount += 1;
  debug('pipe count=%d opts=%j', state.pipesCount, pipeOpts);
  var doEnd = (!pipeOpts || pipeOpts.end !== false) && dest !== process.stdout && dest !== process.stderr;
  var endFn = doEnd ? onend : unpipe;
  if (state.endEmitted) process.nextTick(endFn);else src.once('end', endFn);
  dest.on('unpipe', onunpipe);

  function onunpipe(readable, unpipeInfo) {
    debug('onunpipe');

    if (readable === src) {
      if (unpipeInfo && unpipeInfo.hasUnpiped === false) {
        unpipeInfo.hasUnpiped = true;
        cleanup();
      }
    }
  }

  function onend() {
    debug('onend');
    dest.end();
  } // when the dest drains, it reduces the awaitDrain counter
  // on the source.  This would be more elegant with a .once()
  // handler in flow(), but adding and removing repeatedly is
  // too slow.


  var ondrain = pipeOnDrain(src);
  dest.on('drain', ondrain);
  var cleanedUp = false;

  function cleanup() {
    debug('cleanup'); // cleanup event handlers once the pipe is broken

    dest.removeListener('close', onclose);
    dest.removeListener('finish', onfinish);
    dest.removeListener('drain', ondrain);
    dest.removeListener('error', onerror);
    dest.removeListener('unpipe', onunpipe);
    src.removeListener('end', onend);
    src.removeListener('end', unpipe);
    src.removeListener('data', ondata);
    cleanedUp = true; // if the reader is waiting for a drain event from this
    // specific writer, then it would cause it to never start
    // flowing again.
    // So, if this is awaiting a drain, then we just call it now.
    // If we don't know, then assume that we are waiting for one.

    if (state.awaitDrain && (!dest._writableState || dest._writableState.needDrain)) ondrain();
  }

  src.on('data', ondata);

  function ondata(chunk) {
    debug('ondata');
    var ret = dest.write(chunk);
    debug('dest.write', ret);

    if (ret === false) {
      // If the user unpiped during `dest.write()`, it is possible
      // to get stuck in a permanently paused state if that write
      // also returned false.
      // => Check whether `dest` is still a piping destination.
      if ((state.pipesCount === 1 && state.pipes === dest || state.pipesCount > 1 && indexOf(state.pipes, dest) !== -1) && !cleanedUp) {
        debug('false write response, pause', state.awaitDrain);
        state.awaitDrain++;
      }

      src.pause();
    }
  } // if the dest has an error, then stop piping into it.
  // however, don't suppress the throwing behavior for this.


  function onerror(er) {
    debug('onerror', er);
    unpipe();
    dest.removeListener('error', onerror);
    if (EElistenerCount(dest, 'error') === 0) errorOrDestroy(dest, er);
  } // Make sure our error handler is attached before userland ones.


  prependListener(dest, 'error', onerror); // Both close and finish should trigger unpipe, but only once.

  function onclose() {
    dest.removeListener('finish', onfinish);
    unpipe();
  }

  dest.once('close', onclose);

  function onfinish() {
    debug('onfinish');
    dest.removeListener('close', onclose);
    unpipe();
  }

  dest.once('finish', onfinish);

  function unpipe() {
    debug('unpipe');
    src.unpipe(dest);
  } // tell the dest that it's being piped to


  dest.emit('pipe', src); // start the flow if it hasn't been started already.

  if (!state.flowing) {
    debug('pipe resume');
    src.resume();
  }

  return dest;
};

function pipeOnDrain(src) {
  return function pipeOnDrainFunctionResult() {
    var state = src._readableState;
    debug('pipeOnDrain', state.awaitDrain);
    if (state.awaitDrain) state.awaitDrain--;

    if (state.awaitDrain === 0 && EElistenerCount(src, 'data')) {
      state.flowing = true;
      flow(src);
    }
  };
}

Readable.prototype.unpipe = function (dest) {
  var state = this._readableState;
  var unpipeInfo = {
    hasUnpiped: false
  }; // if we're not piping anywhere, then do nothing.

  if (state.pipesCount === 0) return this; // just one destination.  most common case.

  if (state.pipesCount === 1) {
    // passed in one, but it's not the right one.
    if (dest && dest !== state.pipes) return this;
    if (!dest) dest = state.pipes; // got a match.

    state.pipes = null;
    state.pipesCount = 0;
    state.flowing = false;
    if (dest) dest.emit('unpipe', this, unpipeInfo);
    return this;
  } // slow case. multiple pipe destinations.


  if (!dest) {
    // remove all.
    var dests = state.pipes;
    var len = state.pipesCount;
    state.pipes = null;
    state.pipesCount = 0;
    state.flowing = false;

    for (var i = 0; i < len; i++) {
      dests[i].emit('unpipe', this, {
        hasUnpiped: false
      });
    }

    return this;
  } // try to find the right one.


  var index = indexOf(state.pipes, dest);
  if (index === -1) return this;
  state.pipes.splice(index, 1);
  state.pipesCount -= 1;
  if (state.pipesCount === 1) state.pipes = state.pipes[0];
  dest.emit('unpipe', this, unpipeInfo);
  return this;
}; // set up data events if they are asked for
// Ensure readable listeners eventually get something


Readable.prototype.on = function (ev, fn) {
  var res = Stream.prototype.on.call(this, ev, fn);
  var state = this._readableState;

  if (ev === 'data') {
    // update readableListening so that resume() may be a no-op
    // a few lines down. This is needed to support once('readable').
    state.readableListening = this.listenerCount('readable') > 0; // Try start flowing on next tick if stream isn't explicitly paused

    if (state.flowing !== false) this.resume();
  } else if (ev === 'readable') {
    if (!state.endEmitted && !state.readableListening) {
      state.readableListening = state.needReadable = true;
      state.flowing = false;
      state.emittedReadable = false;
      debug('on readable', state.length, state.reading);

      if (state.length) {
        emitReadable(this);
      } else if (!state.reading) {
        process.nextTick(nReadingNextTick, this);
      }
    }
  }

  return res;
};

Readable.prototype.addListener = Readable.prototype.on;

Readable.prototype.removeListener = function (ev, fn) {
  var res = Stream.prototype.removeListener.call(this, ev, fn);

  if (ev === 'readable') {
    // We need to check if there is someone still listening to
    // readable and reset the state. However this needs to happen
    // after readable has been emitted but before I/O (nextTick) to
    // support once('readable', fn) cycles. This means that calling
    // resume within the same tick will have no
    // effect.
    process.nextTick(updateReadableListening, this);
  }

  return res;
};

Readable.prototype.removeAllListeners = function (ev) {
  var res = Stream.prototype.removeAllListeners.apply(this, arguments);

  if (ev === 'readable' || ev === undefined) {
    // We need to check if there is someone still listening to
    // readable and reset the state. However this needs to happen
    // after readable has been emitted but before I/O (nextTick) to
    // support once('readable', fn) cycles. This means that calling
    // resume within the same tick will have no
    // effect.
    process.nextTick(updateReadableListening, this);
  }

  return res;
};

function updateReadableListening(self) {
  var state = self._readableState;
  state.readableListening = self.listenerCount('readable') > 0;

  if (state.resumeScheduled && !state.paused) {
    // flowing needs to be set to true now, otherwise
    // the upcoming resume will not flow.
    state.flowing = true; // crude way to check if we should resume
  } else if (self.listenerCount('data') > 0) {
    self.resume();
  }
}

function nReadingNextTick(self) {
  debug('readable nexttick read 0');
  self.read(0);
} // pause() and resume() are remnants of the legacy readable stream API
// If the user uses them, then switch into old mode.


Readable.prototype.resume = function () {
  var state = this._readableState;

  if (!state.flowing) {
    debug('resume'); // we flow only if there is no one listening
    // for readable, but we still have to call
    // resume()

    state.flowing = !state.readableListening;
    resume(this, state);
  }

  state.paused = false;
  return this;
};

function resume(stream, state) {
  if (!state.resumeScheduled) {
    state.resumeScheduled = true;
    process.nextTick(resume_, stream, state);
  }
}

function resume_(stream, state) {
  debug('resume', state.reading);

  if (!state.reading) {
    stream.read(0);
  }

  state.resumeScheduled = false;
  stream.emit('resume');
  flow(stream);
  if (state.flowing && !state.reading) stream.read(0);
}

Readable.prototype.pause = function () {
  debug('call pause flowing=%j', this._readableState.flowing);

  if (this._readableState.flowing !== false) {
    debug('pause');
    this._readableState.flowing = false;
    this.emit('pause');
  }

  this._readableState.paused = true;
  return this;
};

function flow(stream) {
  var state = stream._readableState;
  debug('flow', state.flowing);

  while (state.flowing && stream.read() !== null) {
    ;
  }
} // wrap an old-style stream as the async data source.
// This is *not* part of the readable stream interface.
// It is an ugly unfortunate mess of history.


Readable.prototype.wrap = function (stream) {
  var _this = this;

  var state = this._readableState;
  var paused = false;
  stream.on('end', function () {
    debug('wrapped end');

    if (state.decoder && !state.ended) {
      var chunk = state.decoder.end();
      if (chunk && chunk.length) _this.push(chunk);
    }

    _this.push(null);
  });
  stream.on('data', function (chunk) {
    debug('wrapped data');
    if (state.decoder) chunk = state.decoder.write(chunk); // don't skip over falsy values in objectMode

    if (state.objectMode && (chunk === null || chunk === undefined)) return;else if (!state.objectMode && (!chunk || !chunk.length)) return;

    var ret = _this.push(chunk);

    if (!ret) {
      paused = true;
      stream.pause();
    }
  }); // proxy all the other methods.
  // important when wrapping filters and duplexes.

  for (var i in stream) {
    if (this[i] === undefined && typeof stream[i] === 'function') {
      this[i] = function methodWrap(method) {
        return function methodWrapReturnFunction() {
          return stream[method].apply(stream, arguments);
        };
      }(i);
    }
  } // proxy certain important events.


  for (var n = 0; n < kProxyEvents.length; n++) {
    stream.on(kProxyEvents[n], this.emit.bind(this, kProxyEvents[n]));
  } // when we try to consume some more bytes, simply unpause the
  // underlying stream.


  this._read = function (n) {
    debug('wrapped _read', n);

    if (paused) {
      paused = false;
      stream.resume();
    }
  };

  return this;
};

if (typeof Symbol === 'function') {
  Readable.prototype[Symbol.asyncIterator] = function () {
    if (createReadableStreamAsyncIterator === undefined) {
      createReadableStreamAsyncIterator = require('./internal/streams/async_iterator');
    }

    return createReadableStreamAsyncIterator(this);
  };
}

Object.defineProperty(Readable.prototype, 'readableHighWaterMark', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._readableState.highWaterMark;
  }
});
Object.defineProperty(Readable.prototype, 'readableBuffer', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._readableState && this._readableState.buffer;
  }
});
Object.defineProperty(Readable.prototype, 'readableFlowing', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._readableState.flowing;
  },
  set: function set(state) {
    if (this._readableState) {
      this._readableState.flowing = state;
    }
  }
}); // exposed for testing purposes only.

Readable._fromList = fromList;
Object.defineProperty(Readable.prototype, 'readableLength', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._readableState.length;
  }
}); // Pluck off n bytes from an array of buffers.
// Length is the combined lengths of all the buffers in the list.
// This function is designed to be inlinable, so please take care when making
// changes to the function body.

function fromList(n, state) {
  // nothing buffered
  if (state.length === 0) return null;
  var ret;
  if (state.objectMode) ret = state.buffer.shift();else if (!n || n >= state.length) {
    // read it all, truncate the list
    if (state.decoder) ret = state.buffer.join('');else if (state.buffer.length === 1) ret = state.buffer.first();else ret = state.buffer.concat(state.length);
    state.buffer.clear();
  } else {
    // read part of list
    ret = state.buffer.consume(n, state.decoder);
  }
  return ret;
}

function endReadable(stream) {
  var state = stream._readableState;
  debug('endReadable', state.endEmitted);

  if (!state.endEmitted) {
    state.ended = true;
    process.nextTick(endReadableNT, state, stream);
  }
}

function endReadableNT(state, stream) {
  debug('endReadableNT', state.endEmitted, state.length); // Check that we didn't get one last unshift.

  if (!state.endEmitted && state.length === 0) {
    state.endEmitted = true;
    stream.readable = false;
    stream.emit('end');

    if (state.autoDestroy) {
      // In case of duplex streams we need a way to detect
      // if the writable side is ready for autoDestroy as well
      var wState = stream._writableState;

      if (!wState || wState.autoDestroy && wState.finished) {
        stream.destroy();
      }
    }
  }
}

if (typeof Symbol === 'function') {
  Readable.from = function (iterable, opts) {
    if (from === undefined) {
      from = require('./internal/streams/from');
    }

    return from(Readable, iterable, opts);
  };
}

function indexOf(xs, x) {
  for (var i = 0, l = xs.length; i < l; i++) {
    if (xs[i] === x) return i;
  }

  return -1;
}
}).call(this)}).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {})
},{"../errors":33,"./_stream_duplex":34,"./internal/streams/async_iterator":39,"./internal/streams/buffer_list":40,"./internal/streams/destroy":41,"./internal/streams/from":43,"./internal/streams/state":45,"./internal/streams/stream":46,"_process":30,"buffer":25,"events":26,"inherits":28,"string_decoder/":47,"util":24}],37:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// a transform stream is a readable/writable stream where you do
// something with the data.  Sometimes it's called a "filter",
// but that's not a great name for it, since that implies a thing where
// some bits pass through, and others are simply ignored.  (That would
// be a valid example of a transform, of course.)
//
// While the output is causally related to the input, it's not a
// necessarily symmetric or synchronous transformation.  For example,
// a zlib stream might take multiple plain-text writes(), and then
// emit a single compressed chunk some time in the future.
//
// Here's how this works:
//
// The Transform stream has all the aspects of the readable and writable
// stream classes.  When you write(chunk), that calls _write(chunk,cb)
// internally, and returns false if there's a lot of pending writes
// buffered up.  When you call read(), that calls _read(n) until
// there's enough pending readable data buffered up.
//
// In a transform stream, the written data is placed in a buffer.  When
// _read(n) is called, it transforms the queued up data, calling the
// buffered _write cb's as it consumes chunks.  If consuming a single
// written chunk would result in multiple output chunks, then the first
// outputted bit calls the readcb, and subsequent chunks just go into
// the read buffer, and will cause it to emit 'readable' if necessary.
//
// This way, back-pressure is actually determined by the reading side,
// since _read has to be called to start processing a new chunk.  However,
// a pathological inflate type of transform can cause excessive buffering
// here.  For example, imagine a stream where every byte of input is
// interpreted as an integer from 0-255, and then results in that many
// bytes of output.  Writing the 4 bytes {ff,ff,ff,ff} would result in
// 1kb of data being output.  In this case, you could write a very small
// amount of input, and end up with a very large amount of output.  In
// such a pathological inflating mechanism, there'd be no way to tell
// the system to stop doing the transform.  A single 4MB write could
// cause the system to run out of memory.
//
// However, even in such a pathological case, only a single written chunk
// would be consumed, and then the rest would wait (un-transformed) until
// the results of the previous transformed chunk were consumed.
'use strict';

module.exports = Transform;

var _require$codes = require('../errors').codes,
    ERR_METHOD_NOT_IMPLEMENTED = _require$codes.ERR_METHOD_NOT_IMPLEMENTED,
    ERR_MULTIPLE_CALLBACK = _require$codes.ERR_MULTIPLE_CALLBACK,
    ERR_TRANSFORM_ALREADY_TRANSFORMING = _require$codes.ERR_TRANSFORM_ALREADY_TRANSFORMING,
    ERR_TRANSFORM_WITH_LENGTH_0 = _require$codes.ERR_TRANSFORM_WITH_LENGTH_0;

var Duplex = require('./_stream_duplex');

require('inherits')(Transform, Duplex);

function afterTransform(er, data) {
  var ts = this._transformState;
  ts.transforming = false;
  var cb = ts.writecb;

  if (cb === null) {
    return this.emit('error', new ERR_MULTIPLE_CALLBACK());
  }

  ts.writechunk = null;
  ts.writecb = null;
  if (data != null) // single equals check for both `null` and `undefined`
    this.push(data);
  cb(er);
  var rs = this._readableState;
  rs.reading = false;

  if (rs.needReadable || rs.length < rs.highWaterMark) {
    this._read(rs.highWaterMark);
  }
}

function Transform(options) {
  if (!(this instanceof Transform)) return new Transform(options);
  Duplex.call(this, options);
  this._transformState = {
    afterTransform: afterTransform.bind(this),
    needTransform: false,
    transforming: false,
    writecb: null,
    writechunk: null,
    writeencoding: null
  }; // start out asking for a readable event once data is transformed.

  this._readableState.needReadable = true; // we have implemented the _read method, and done the other things
  // that Readable wants before the first _read call, so unset the
  // sync guard flag.

  this._readableState.sync = false;

  if (options) {
    if (typeof options.transform === 'function') this._transform = options.transform;
    if (typeof options.flush === 'function') this._flush = options.flush;
  } // When the writable side finishes, then flush out anything remaining.


  this.on('prefinish', prefinish);
}

function prefinish() {
  var _this = this;

  if (typeof this._flush === 'function' && !this._readableState.destroyed) {
    this._flush(function (er, data) {
      done(_this, er, data);
    });
  } else {
    done(this, null, null);
  }
}

Transform.prototype.push = function (chunk, encoding) {
  this._transformState.needTransform = false;
  return Duplex.prototype.push.call(this, chunk, encoding);
}; // This is the part where you do stuff!
// override this function in implementation classes.
// 'chunk' is an input chunk.
//
// Call `push(newChunk)` to pass along transformed output
// to the readable side.  You may call 'push' zero or more times.
//
// Call `cb(err)` when you are done with this chunk.  If you pass
// an error, then that'll put the hurt on the whole operation.  If you
// never call cb(), then you'll never get another chunk.


Transform.prototype._transform = function (chunk, encoding, cb) {
  cb(new ERR_METHOD_NOT_IMPLEMENTED('_transform()'));
};

Transform.prototype._write = function (chunk, encoding, cb) {
  var ts = this._transformState;
  ts.writecb = cb;
  ts.writechunk = chunk;
  ts.writeencoding = encoding;

  if (!ts.transforming) {
    var rs = this._readableState;
    if (ts.needTransform || rs.needReadable || rs.length < rs.highWaterMark) this._read(rs.highWaterMark);
  }
}; // Doesn't matter what the args are here.
// _transform does all the work.
// That we got here means that the readable side wants more data.


Transform.prototype._read = function (n) {
  var ts = this._transformState;

  if (ts.writechunk !== null && !ts.transforming) {
    ts.transforming = true;

    this._transform(ts.writechunk, ts.writeencoding, ts.afterTransform);
  } else {
    // mark that we need a transform, so that any data that comes in
    // will get processed, now that we've asked for it.
    ts.needTransform = true;
  }
};

Transform.prototype._destroy = function (err, cb) {
  Duplex.prototype._destroy.call(this, err, function (err2) {
    cb(err2);
  });
};

function done(stream, er, data) {
  if (er) return stream.emit('error', er);
  if (data != null) // single equals check for both `null` and `undefined`
    stream.push(data); // TODO(BridgeAR): Write a test for these two error cases
  // if there's nothing in the write buffer, then that means
  // that nothing more will ever be provided

  if (stream._writableState.length) throw new ERR_TRANSFORM_WITH_LENGTH_0();
  if (stream._transformState.transforming) throw new ERR_TRANSFORM_ALREADY_TRANSFORMING();
  return stream.push(null);
}
},{"../errors":33,"./_stream_duplex":34,"inherits":28}],38:[function(require,module,exports){
(function (process,global){(function (){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// A bit simpler than readable streams.
// Implement an async ._write(chunk, encoding, cb), and it'll handle all
// the drain event emission and buffering.
'use strict';

module.exports = Writable;
/* <replacement> */

function WriteReq(chunk, encoding, cb) {
  this.chunk = chunk;
  this.encoding = encoding;
  this.callback = cb;
  this.next = null;
} // It seems a linked list but it is not
// there will be only 2 of these for each stream


function CorkedRequest(state) {
  var _this = this;

  this.next = null;
  this.entry = null;

  this.finish = function () {
    onCorkedFinish(_this, state);
  };
}
/* </replacement> */

/*<replacement>*/


var Duplex;
/*</replacement>*/

Writable.WritableState = WritableState;
/*<replacement>*/

var internalUtil = {
  deprecate: require('util-deprecate')
};
/*</replacement>*/

/*<replacement>*/

var Stream = require('./internal/streams/stream');
/*</replacement>*/


var Buffer = require('buffer').Buffer;

var OurUint8Array = global.Uint8Array || function () {};

function _uint8ArrayToBuffer(chunk) {
  return Buffer.from(chunk);
}

function _isUint8Array(obj) {
  return Buffer.isBuffer(obj) || obj instanceof OurUint8Array;
}

var destroyImpl = require('./internal/streams/destroy');

var _require = require('./internal/streams/state'),
    getHighWaterMark = _require.getHighWaterMark;

var _require$codes = require('../errors').codes,
    ERR_INVALID_ARG_TYPE = _require$codes.ERR_INVALID_ARG_TYPE,
    ERR_METHOD_NOT_IMPLEMENTED = _require$codes.ERR_METHOD_NOT_IMPLEMENTED,
    ERR_MULTIPLE_CALLBACK = _require$codes.ERR_MULTIPLE_CALLBACK,
    ERR_STREAM_CANNOT_PIPE = _require$codes.ERR_STREAM_CANNOT_PIPE,
    ERR_STREAM_DESTROYED = _require$codes.ERR_STREAM_DESTROYED,
    ERR_STREAM_NULL_VALUES = _require$codes.ERR_STREAM_NULL_VALUES,
    ERR_STREAM_WRITE_AFTER_END = _require$codes.ERR_STREAM_WRITE_AFTER_END,
    ERR_UNKNOWN_ENCODING = _require$codes.ERR_UNKNOWN_ENCODING;

var errorOrDestroy = destroyImpl.errorOrDestroy;

require('inherits')(Writable, Stream);

function nop() {}

function WritableState(options, stream, isDuplex) {
  Duplex = Duplex || require('./_stream_duplex');
  options = options || {}; // Duplex streams are both readable and writable, but share
  // the same options object.
  // However, some cases require setting options to different
  // values for the readable and the writable sides of the duplex stream,
  // e.g. options.readableObjectMode vs. options.writableObjectMode, etc.

  if (typeof isDuplex !== 'boolean') isDuplex = stream instanceof Duplex; // object stream flag to indicate whether or not this stream
  // contains buffers or objects.

  this.objectMode = !!options.objectMode;
  if (isDuplex) this.objectMode = this.objectMode || !!options.writableObjectMode; // the point at which write() starts returning false
  // Note: 0 is a valid value, means that we always return false if
  // the entire buffer is not flushed immediately on write()

  this.highWaterMark = getHighWaterMark(this, options, 'writableHighWaterMark', isDuplex); // if _final has been called

  this.finalCalled = false; // drain event flag.

  this.needDrain = false; // at the start of calling end()

  this.ending = false; // when end() has been called, and returned

  this.ended = false; // when 'finish' is emitted

  this.finished = false; // has it been destroyed

  this.destroyed = false; // should we decode strings into buffers before passing to _write?
  // this is here so that some node-core streams can optimize string
  // handling at a lower level.

  var noDecode = options.decodeStrings === false;
  this.decodeStrings = !noDecode; // Crypto is kind of old and crusty.  Historically, its default string
  // encoding is 'binary' so we have to make this configurable.
  // Everything else in the universe uses 'utf8', though.

  this.defaultEncoding = options.defaultEncoding || 'utf8'; // not an actual buffer we keep track of, but a measurement
  // of how much we're waiting to get pushed to some underlying
  // socket or file.

  this.length = 0; // a flag to see when we're in the middle of a write.

  this.writing = false; // when true all writes will be buffered until .uncork() call

  this.corked = 0; // a flag to be able to tell if the onwrite cb is called immediately,
  // or on a later tick.  We set this to true at first, because any
  // actions that shouldn't happen until "later" should generally also
  // not happen before the first write call.

  this.sync = true; // a flag to know if we're processing previously buffered items, which
  // may call the _write() callback in the same tick, so that we don't
  // end up in an overlapped onwrite situation.

  this.bufferProcessing = false; // the callback that's passed to _write(chunk,cb)

  this.onwrite = function (er) {
    onwrite(stream, er);
  }; // the callback that the user supplies to write(chunk,encoding,cb)


  this.writecb = null; // the amount that is being written when _write is called.

  this.writelen = 0;
  this.bufferedRequest = null;
  this.lastBufferedRequest = null; // number of pending user-supplied write callbacks
  // this must be 0 before 'finish' can be emitted

  this.pendingcb = 0; // emit prefinish if the only thing we're waiting for is _write cbs
  // This is relevant for synchronous Transform streams

  this.prefinished = false; // True if the error was already emitted and should not be thrown again

  this.errorEmitted = false; // Should close be emitted on destroy. Defaults to true.

  this.emitClose = options.emitClose !== false; // Should .destroy() be called after 'finish' (and potentially 'end')

  this.autoDestroy = !!options.autoDestroy; // count buffered requests

  this.bufferedRequestCount = 0; // allocate the first CorkedRequest, there is always
  // one allocated and free to use, and we maintain at most two

  this.corkedRequestsFree = new CorkedRequest(this);
}

WritableState.prototype.getBuffer = function getBuffer() {
  var current = this.bufferedRequest;
  var out = [];

  while (current) {
    out.push(current);
    current = current.next;
  }

  return out;
};

(function () {
  try {
    Object.defineProperty(WritableState.prototype, 'buffer', {
      get: internalUtil.deprecate(function writableStateBufferGetter() {
        return this.getBuffer();
      }, '_writableState.buffer is deprecated. Use _writableState.getBuffer ' + 'instead.', 'DEP0003')
    });
  } catch (_) {}
})(); // Test _writableState for inheritance to account for Duplex streams,
// whose prototype chain only points to Readable.


var realHasInstance;

if (typeof Symbol === 'function' && Symbol.hasInstance && typeof Function.prototype[Symbol.hasInstance] === 'function') {
  realHasInstance = Function.prototype[Symbol.hasInstance];
  Object.defineProperty(Writable, Symbol.hasInstance, {
    value: function value(object) {
      if (realHasInstance.call(this, object)) return true;
      if (this !== Writable) return false;
      return object && object._writableState instanceof WritableState;
    }
  });
} else {
  realHasInstance = function realHasInstance(object) {
    return object instanceof this;
  };
}

function Writable(options) {
  Duplex = Duplex || require('./_stream_duplex'); // Writable ctor is applied to Duplexes, too.
  // `realHasInstance` is necessary because using plain `instanceof`
  // would return false, as no `_writableState` property is attached.
  // Trying to use the custom `instanceof` for Writable here will also break the
  // Node.js LazyTransform implementation, which has a non-trivial getter for
  // `_writableState` that would lead to infinite recursion.
  // Checking for a Stream.Duplex instance is faster here instead of inside
  // the WritableState constructor, at least with V8 6.5

  var isDuplex = this instanceof Duplex;
  if (!isDuplex && !realHasInstance.call(Writable, this)) return new Writable(options);
  this._writableState = new WritableState(options, this, isDuplex); // legacy.

  this.writable = true;

  if (options) {
    if (typeof options.write === 'function') this._write = options.write;
    if (typeof options.writev === 'function') this._writev = options.writev;
    if (typeof options.destroy === 'function') this._destroy = options.destroy;
    if (typeof options.final === 'function') this._final = options.final;
  }

  Stream.call(this);
} // Otherwise people can pipe Writable streams, which is just wrong.


Writable.prototype.pipe = function () {
  errorOrDestroy(this, new ERR_STREAM_CANNOT_PIPE());
};

function writeAfterEnd(stream, cb) {
  var er = new ERR_STREAM_WRITE_AFTER_END(); // TODO: defer error events consistently everywhere, not just the cb

  errorOrDestroy(stream, er);
  process.nextTick(cb, er);
} // Checks that a user-supplied chunk is valid, especially for the particular
// mode the stream is in. Currently this means that `null` is never accepted
// and undefined/non-string values are only allowed in object mode.


function validChunk(stream, state, chunk, cb) {
  var er;

  if (chunk === null) {
    er = new ERR_STREAM_NULL_VALUES();
  } else if (typeof chunk !== 'string' && !state.objectMode) {
    er = new ERR_INVALID_ARG_TYPE('chunk', ['string', 'Buffer'], chunk);
  }

  if (er) {
    errorOrDestroy(stream, er);
    process.nextTick(cb, er);
    return false;
  }

  return true;
}

Writable.prototype.write = function (chunk, encoding, cb) {
  var state = this._writableState;
  var ret = false;

  var isBuf = !state.objectMode && _isUint8Array(chunk);

  if (isBuf && !Buffer.isBuffer(chunk)) {
    chunk = _uint8ArrayToBuffer(chunk);
  }

  if (typeof encoding === 'function') {
    cb = encoding;
    encoding = null;
  }

  if (isBuf) encoding = 'buffer';else if (!encoding) encoding = state.defaultEncoding;
  if (typeof cb !== 'function') cb = nop;
  if (state.ending) writeAfterEnd(this, cb);else if (isBuf || validChunk(this, state, chunk, cb)) {
    state.pendingcb++;
    ret = writeOrBuffer(this, state, isBuf, chunk, encoding, cb);
  }
  return ret;
};

Writable.prototype.cork = function () {
  this._writableState.corked++;
};

Writable.prototype.uncork = function () {
  var state = this._writableState;

  if (state.corked) {
    state.corked--;
    if (!state.writing && !state.corked && !state.bufferProcessing && state.bufferedRequest) clearBuffer(this, state);
  }
};

Writable.prototype.setDefaultEncoding = function setDefaultEncoding(encoding) {
  // node::ParseEncoding() requires lower case.
  if (typeof encoding === 'string') encoding = encoding.toLowerCase();
  if (!(['hex', 'utf8', 'utf-8', 'ascii', 'binary', 'base64', 'ucs2', 'ucs-2', 'utf16le', 'utf-16le', 'raw'].indexOf((encoding + '').toLowerCase()) > -1)) throw new ERR_UNKNOWN_ENCODING(encoding);
  this._writableState.defaultEncoding = encoding;
  return this;
};

Object.defineProperty(Writable.prototype, 'writableBuffer', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._writableState && this._writableState.getBuffer();
  }
});

function decodeChunk(state, chunk, encoding) {
  if (!state.objectMode && state.decodeStrings !== false && typeof chunk === 'string') {
    chunk = Buffer.from(chunk, encoding);
  }

  return chunk;
}

Object.defineProperty(Writable.prototype, 'writableHighWaterMark', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._writableState.highWaterMark;
  }
}); // if we're already writing something, then just put this
// in the queue, and wait our turn.  Otherwise, call _write
// If we return false, then we need a drain event, so set that flag.

function writeOrBuffer(stream, state, isBuf, chunk, encoding, cb) {
  if (!isBuf) {
    var newChunk = decodeChunk(state, chunk, encoding);

    if (chunk !== newChunk) {
      isBuf = true;
      encoding = 'buffer';
      chunk = newChunk;
    }
  }

  var len = state.objectMode ? 1 : chunk.length;
  state.length += len;
  var ret = state.length < state.highWaterMark; // we must ensure that previous needDrain will not be reset to false.

  if (!ret) state.needDrain = true;

  if (state.writing || state.corked) {
    var last = state.lastBufferedRequest;
    state.lastBufferedRequest = {
      chunk: chunk,
      encoding: encoding,
      isBuf: isBuf,
      callback: cb,
      next: null
    };

    if (last) {
      last.next = state.lastBufferedRequest;
    } else {
      state.bufferedRequest = state.lastBufferedRequest;
    }

    state.bufferedRequestCount += 1;
  } else {
    doWrite(stream, state, false, len, chunk, encoding, cb);
  }

  return ret;
}

function doWrite(stream, state, writev, len, chunk, encoding, cb) {
  state.writelen = len;
  state.writecb = cb;
  state.writing = true;
  state.sync = true;
  if (state.destroyed) state.onwrite(new ERR_STREAM_DESTROYED('write'));else if (writev) stream._writev(chunk, state.onwrite);else stream._write(chunk, encoding, state.onwrite);
  state.sync = false;
}

function onwriteError(stream, state, sync, er, cb) {
  --state.pendingcb;

  if (sync) {
    // defer the callback if we are being called synchronously
    // to avoid piling up things on the stack
    process.nextTick(cb, er); // this can emit finish, and it will always happen
    // after error

    process.nextTick(finishMaybe, stream, state);
    stream._writableState.errorEmitted = true;
    errorOrDestroy(stream, er);
  } else {
    // the caller expect this to happen before if
    // it is async
    cb(er);
    stream._writableState.errorEmitted = true;
    errorOrDestroy(stream, er); // this can emit finish, but finish must
    // always follow error

    finishMaybe(stream, state);
  }
}

function onwriteStateUpdate(state) {
  state.writing = false;
  state.writecb = null;
  state.length -= state.writelen;
  state.writelen = 0;
}

function onwrite(stream, er) {
  var state = stream._writableState;
  var sync = state.sync;
  var cb = state.writecb;
  if (typeof cb !== 'function') throw new ERR_MULTIPLE_CALLBACK();
  onwriteStateUpdate(state);
  if (er) onwriteError(stream, state, sync, er, cb);else {
    // Check if we're actually ready to finish, but don't emit yet
    var finished = needFinish(state) || stream.destroyed;

    if (!finished && !state.corked && !state.bufferProcessing && state.bufferedRequest) {
      clearBuffer(stream, state);
    }

    if (sync) {
      process.nextTick(afterWrite, stream, state, finished, cb);
    } else {
      afterWrite(stream, state, finished, cb);
    }
  }
}

function afterWrite(stream, state, finished, cb) {
  if (!finished) onwriteDrain(stream, state);
  state.pendingcb--;
  cb();
  finishMaybe(stream, state);
} // Must force callback to be called on nextTick, so that we don't
// emit 'drain' before the write() consumer gets the 'false' return
// value, and has a chance to attach a 'drain' listener.


function onwriteDrain(stream, state) {
  if (state.length === 0 && state.needDrain) {
    state.needDrain = false;
    stream.emit('drain');
  }
} // if there's something in the buffer waiting, then process it


function clearBuffer(stream, state) {
  state.bufferProcessing = true;
  var entry = state.bufferedRequest;

  if (stream._writev && entry && entry.next) {
    // Fast case, write everything using _writev()
    var l = state.bufferedRequestCount;
    var buffer = new Array(l);
    var holder = state.corkedRequestsFree;
    holder.entry = entry;
    var count = 0;
    var allBuffers = true;

    while (entry) {
      buffer[count] = entry;
      if (!entry.isBuf) allBuffers = false;
      entry = entry.next;
      count += 1;
    }

    buffer.allBuffers = allBuffers;
    doWrite(stream, state, true, state.length, buffer, '', holder.finish); // doWrite is almost always async, defer these to save a bit of time
    // as the hot path ends with doWrite

    state.pendingcb++;
    state.lastBufferedRequest = null;

    if (holder.next) {
      state.corkedRequestsFree = holder.next;
      holder.next = null;
    } else {
      state.corkedRequestsFree = new CorkedRequest(state);
    }

    state.bufferedRequestCount = 0;
  } else {
    // Slow case, write chunks one-by-one
    while (entry) {
      var chunk = entry.chunk;
      var encoding = entry.encoding;
      var cb = entry.callback;
      var len = state.objectMode ? 1 : chunk.length;
      doWrite(stream, state, false, len, chunk, encoding, cb);
      entry = entry.next;
      state.bufferedRequestCount--; // if we didn't call the onwrite immediately, then
      // it means that we need to wait until it does.
      // also, that means that the chunk and cb are currently
      // being processed, so move the buffer counter past them.

      if (state.writing) {
        break;
      }
    }

    if (entry === null) state.lastBufferedRequest = null;
  }

  state.bufferedRequest = entry;
  state.bufferProcessing = false;
}

Writable.prototype._write = function (chunk, encoding, cb) {
  cb(new ERR_METHOD_NOT_IMPLEMENTED('_write()'));
};

Writable.prototype._writev = null;

Writable.prototype.end = function (chunk, encoding, cb) {
  var state = this._writableState;

  if (typeof chunk === 'function') {
    cb = chunk;
    chunk = null;
    encoding = null;
  } else if (typeof encoding === 'function') {
    cb = encoding;
    encoding = null;
  }

  if (chunk !== null && chunk !== undefined) this.write(chunk, encoding); // .end() fully uncorks

  if (state.corked) {
    state.corked = 1;
    this.uncork();
  } // ignore unnecessary end() calls.


  if (!state.ending) endWritable(this, state, cb);
  return this;
};

Object.defineProperty(Writable.prototype, 'writableLength', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    return this._writableState.length;
  }
});

function needFinish(state) {
  return state.ending && state.length === 0 && state.bufferedRequest === null && !state.finished && !state.writing;
}

function callFinal(stream, state) {
  stream._final(function (err) {
    state.pendingcb--;

    if (err) {
      errorOrDestroy(stream, err);
    }

    state.prefinished = true;
    stream.emit('prefinish');
    finishMaybe(stream, state);
  });
}

function prefinish(stream, state) {
  if (!state.prefinished && !state.finalCalled) {
    if (typeof stream._final === 'function' && !state.destroyed) {
      state.pendingcb++;
      state.finalCalled = true;
      process.nextTick(callFinal, stream, state);
    } else {
      state.prefinished = true;
      stream.emit('prefinish');
    }
  }
}

function finishMaybe(stream, state) {
  var need = needFinish(state);

  if (need) {
    prefinish(stream, state);

    if (state.pendingcb === 0) {
      state.finished = true;
      stream.emit('finish');

      if (state.autoDestroy) {
        // In case of duplex streams we need a way to detect
        // if the readable side is ready for autoDestroy as well
        var rState = stream._readableState;

        if (!rState || rState.autoDestroy && rState.endEmitted) {
          stream.destroy();
        }
      }
    }
  }

  return need;
}

function endWritable(stream, state, cb) {
  state.ending = true;
  finishMaybe(stream, state);

  if (cb) {
    if (state.finished) process.nextTick(cb);else stream.once('finish', cb);
  }

  state.ended = true;
  stream.writable = false;
}

function onCorkedFinish(corkReq, state, err) {
  var entry = corkReq.entry;
  corkReq.entry = null;

  while (entry) {
    var cb = entry.callback;
    state.pendingcb--;
    cb(err);
    entry = entry.next;
  } // reuse the free corkReq.


  state.corkedRequestsFree.next = corkReq;
}

Object.defineProperty(Writable.prototype, 'destroyed', {
  // making it explicit this property is not enumerable
  // because otherwise some prototype manipulation in
  // userland will fail
  enumerable: false,
  get: function get() {
    if (this._writableState === undefined) {
      return false;
    }

    return this._writableState.destroyed;
  },
  set: function set(value) {
    // we ignore the value if the stream
    // has not been initialized yet
    if (!this._writableState) {
      return;
    } // backward compatibility, the user is explicitly
    // managing destroyed


    this._writableState.destroyed = value;
  }
});
Writable.prototype.destroy = destroyImpl.destroy;
Writable.prototype._undestroy = destroyImpl.undestroy;

Writable.prototype._destroy = function (err, cb) {
  cb(err);
};
}).call(this)}).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {})
},{"../errors":33,"./_stream_duplex":34,"./internal/streams/destroy":41,"./internal/streams/state":45,"./internal/streams/stream":46,"_process":30,"buffer":25,"inherits":28,"util-deprecate":48}],39:[function(require,module,exports){
(function (process){(function (){
'use strict';

var _Object$setPrototypeO;

function _defineProperty(obj, key, value) { if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; }

var finished = require('./end-of-stream');

var kLastResolve = Symbol('lastResolve');
var kLastReject = Symbol('lastReject');
var kError = Symbol('error');
var kEnded = Symbol('ended');
var kLastPromise = Symbol('lastPromise');
var kHandlePromise = Symbol('handlePromise');
var kStream = Symbol('stream');

function createIterResult(value, done) {
  return {
    value: value,
    done: done
  };
}

function readAndResolve(iter) {
  var resolve = iter[kLastResolve];

  if (resolve !== null) {
    var data = iter[kStream].read(); // we defer if data is null
    // we can be expecting either 'end' or
    // 'error'

    if (data !== null) {
      iter[kLastPromise] = null;
      iter[kLastResolve] = null;
      iter[kLastReject] = null;
      resolve(createIterResult(data, false));
    }
  }
}

function onReadable(iter) {
  // we wait for the next tick, because it might
  // emit an error with process.nextTick
  process.nextTick(readAndResolve, iter);
}

function wrapForNext(lastPromise, iter) {
  return function (resolve, reject) {
    lastPromise.then(function () {
      if (iter[kEnded]) {
        resolve(createIterResult(undefined, true));
        return;
      }

      iter[kHandlePromise](resolve, reject);
    }, reject);
  };
}

var AsyncIteratorPrototype = Object.getPrototypeOf(function () {});
var ReadableStreamAsyncIteratorPrototype = Object.setPrototypeOf((_Object$setPrototypeO = {
  get stream() {
    return this[kStream];
  },

  next: function next() {
    var _this = this;

    // if we have detected an error in the meanwhile
    // reject straight away
    var error = this[kError];

    if (error !== null) {
      return Promise.reject(error);
    }

    if (this[kEnded]) {
      return Promise.resolve(createIterResult(undefined, true));
    }

    if (this[kStream].destroyed) {
      // We need to defer via nextTick because if .destroy(err) is
      // called, the error will be emitted via nextTick, and
      // we cannot guarantee that there is no error lingering around
      // waiting to be emitted.
      return new Promise(function (resolve, reject) {
        process.nextTick(function () {
          if (_this[kError]) {
            reject(_this[kError]);
          } else {
            resolve(createIterResult(undefined, true));
          }
        });
      });
    } // if we have multiple next() calls
    // we will wait for the previous Promise to finish
    // this logic is optimized to support for await loops,
    // where next() is only called once at a time


    var lastPromise = this[kLastPromise];
    var promise;

    if (lastPromise) {
      promise = new Promise(wrapForNext(lastPromise, this));
    } else {
      // fast path needed to support multiple this.push()
      // without triggering the next() queue
      var data = this[kStream].read();

      if (data !== null) {
        return Promise.resolve(createIterResult(data, false));
      }

      promise = new Promise(this[kHandlePromise]);
    }

    this[kLastPromise] = promise;
    return promise;
  }
}, _defineProperty(_Object$setPrototypeO, Symbol.asyncIterator, function () {
  return this;
}), _defineProperty(_Object$setPrototypeO, "return", function _return() {
  var _this2 = this;

  // destroy(err, cb) is a private API
  // we can guarantee we have that here, because we control the
  // Readable class this is attached to
  return new Promise(function (resolve, reject) {
    _this2[kStream].destroy(null, function (err) {
      if (err) {
        reject(err);
        return;
      }

      resolve(createIterResult(undefined, true));
    });
  });
}), _Object$setPrototypeO), AsyncIteratorPrototype);

var createReadableStreamAsyncIterator = function createReadableStreamAsyncIterator(stream) {
  var _Object$create;

  var iterator = Object.create(ReadableStreamAsyncIteratorPrototype, (_Object$create = {}, _defineProperty(_Object$create, kStream, {
    value: stream,
    writable: true
  }), _defineProperty(_Object$create, kLastResolve, {
    value: null,
    writable: true
  }), _defineProperty(_Object$create, kLastReject, {
    value: null,
    writable: true
  }), _defineProperty(_Object$create, kError, {
    value: null,
    writable: true
  }), _defineProperty(_Object$create, kEnded, {
    value: stream._readableState.endEmitted,
    writable: true
  }), _defineProperty(_Object$create, kHandlePromise, {
    value: function value(resolve, reject) {
      var data = iterator[kStream].read();

      if (data) {
        iterator[kLastPromise] = null;
        iterator[kLastResolve] = null;
        iterator[kLastReject] = null;
        resolve(createIterResult(data, false));
      } else {
        iterator[kLastResolve] = resolve;
        iterator[kLastReject] = reject;
      }
    },
    writable: true
  }), _Object$create));
  iterator[kLastPromise] = null;
  finished(stream, function (err) {
    if (err && err.code !== 'ERR_STREAM_PREMATURE_CLOSE') {
      var reject = iterator[kLastReject]; // reject if we are waiting for data in the Promise
      // returned by next() and store the error

      if (reject !== null) {
        iterator[kLastPromise] = null;
        iterator[kLastResolve] = null;
        iterator[kLastReject] = null;
        reject(err);
      }

      iterator[kError] = err;
      return;
    }

    var resolve = iterator[kLastResolve];

    if (resolve !== null) {
      iterator[kLastPromise] = null;
      iterator[kLastResolve] = null;
      iterator[kLastReject] = null;
      resolve(createIterResult(undefined, true));
    }

    iterator[kEnded] = true;
  });
  stream.on('readable', onReadable.bind(null, iterator));
  return iterator;
};

module.exports = createReadableStreamAsyncIterator;
}).call(this)}).call(this,require('_process'))
},{"./end-of-stream":42,"_process":30}],40:[function(require,module,exports){
'use strict';

function ownKeys(object, enumerableOnly) { var keys = Object.keys(object); if (Object.getOwnPropertySymbols) { var symbols = Object.getOwnPropertySymbols(object); if (enumerableOnly) symbols = symbols.filter(function (sym) { return Object.getOwnPropertyDescriptor(object, sym).enumerable; }); keys.push.apply(keys, symbols); } return keys; }

function _objectSpread(target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i] != null ? arguments[i] : {}; if (i % 2) { ownKeys(Object(source), true).forEach(function (key) { _defineProperty(target, key, source[key]); }); } else if (Object.getOwnPropertyDescriptors) { Object.defineProperties(target, Object.getOwnPropertyDescriptors(source)); } else { ownKeys(Object(source)).forEach(function (key) { Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key)); }); } } return target; }

function _defineProperty(obj, key, value) { if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; }

function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }

function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } }

function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); return Constructor; }

var _require = require('buffer'),
    Buffer = _require.Buffer;

var _require2 = require('util'),
    inspect = _require2.inspect;

var custom = inspect && inspect.custom || 'inspect';

function copyBuffer(src, target, offset) {
  Buffer.prototype.copy.call(src, target, offset);
}

module.exports =
/*#__PURE__*/
function () {
  function BufferList() {
    _classCallCheck(this, BufferList);

    this.head = null;
    this.tail = null;
    this.length = 0;
  }

  _createClass(BufferList, [{
    key: "push",
    value: function push(v) {
      var entry = {
        data: v,
        next: null
      };
      if (this.length > 0) this.tail.next = entry;else this.head = entry;
      this.tail = entry;
      ++this.length;
    }
  }, {
    key: "unshift",
    value: function unshift(v) {
      var entry = {
        data: v,
        next: this.head
      };
      if (this.length === 0) this.tail = entry;
      this.head = entry;
      ++this.length;
    }
  }, {
    key: "shift",
    value: function shift() {
      if (this.length === 0) return;
      var ret = this.head.data;
      if (this.length === 1) this.head = this.tail = null;else this.head = this.head.next;
      --this.length;
      return ret;
    }
  }, {
    key: "clear",
    value: function clear() {
      this.head = this.tail = null;
      this.length = 0;
    }
  }, {
    key: "join",
    value: function join(s) {
      if (this.length === 0) return '';
      var p = this.head;
      var ret = '' + p.data;

      while (p = p.next) {
        ret += s + p.data;
      }

      return ret;
    }
  }, {
    key: "concat",
    value: function concat(n) {
      if (this.length === 0) return Buffer.alloc(0);
      var ret = Buffer.allocUnsafe(n >>> 0);
      var p = this.head;
      var i = 0;

      while (p) {
        copyBuffer(p.data, ret, i);
        i += p.data.length;
        p = p.next;
      }

      return ret;
    } // Consumes a specified amount of bytes or characters from the buffered data.

  }, {
    key: "consume",
    value: function consume(n, hasStrings) {
      var ret;

      if (n < this.head.data.length) {
        // `slice` is the same for buffers and strings.
        ret = this.head.data.slice(0, n);
        this.head.data = this.head.data.slice(n);
      } else if (n === this.head.data.length) {
        // First chunk is a perfect match.
        ret = this.shift();
      } else {
        // Result spans more than one buffer.
        ret = hasStrings ? this._getString(n) : this._getBuffer(n);
      }

      return ret;
    }
  }, {
    key: "first",
    value: function first() {
      return this.head.data;
    } // Consumes a specified amount of characters from the buffered data.

  }, {
    key: "_getString",
    value: function _getString(n) {
      var p = this.head;
      var c = 1;
      var ret = p.data;
      n -= ret.length;

      while (p = p.next) {
        var str = p.data;
        var nb = n > str.length ? str.length : n;
        if (nb === str.length) ret += str;else ret += str.slice(0, n);
        n -= nb;

        if (n === 0) {
          if (nb === str.length) {
            ++c;
            if (p.next) this.head = p.next;else this.head = this.tail = null;
          } else {
            this.head = p;
            p.data = str.slice(nb);
          }

          break;
        }

        ++c;
      }

      this.length -= c;
      return ret;
    } // Consumes a specified amount of bytes from the buffered data.

  }, {
    key: "_getBuffer",
    value: function _getBuffer(n) {
      var ret = Buffer.allocUnsafe(n);
      var p = this.head;
      var c = 1;
      p.data.copy(ret);
      n -= p.data.length;

      while (p = p.next) {
        var buf = p.data;
        var nb = n > buf.length ? buf.length : n;
        buf.copy(ret, ret.length - n, 0, nb);
        n -= nb;

        if (n === 0) {
          if (nb === buf.length) {
            ++c;
            if (p.next) this.head = p.next;else this.head = this.tail = null;
          } else {
            this.head = p;
            p.data = buf.slice(nb);
          }

          break;
        }

        ++c;
      }

      this.length -= c;
      return ret;
    } // Make sure the linked list only shows the minimal necessary information.

  }, {
    key: custom,
    value: function value(_, options) {
      return inspect(this, _objectSpread({}, options, {
        // Only inspect one level.
        depth: 0,
        // It should not recurse.
        customInspect: false
      }));
    }
  }]);

  return BufferList;
}();
},{"buffer":25,"util":24}],41:[function(require,module,exports){
(function (process){(function (){
'use strict'; // undocumented cb() API, needed for core, not for public API

function destroy(err, cb) {
  var _this = this;

  var readableDestroyed = this._readableState && this._readableState.destroyed;
  var writableDestroyed = this._writableState && this._writableState.destroyed;

  if (readableDestroyed || writableDestroyed) {
    if (cb) {
      cb(err);
    } else if (err) {
      if (!this._writableState) {
        process.nextTick(emitErrorNT, this, err);
      } else if (!this._writableState.errorEmitted) {
        this._writableState.errorEmitted = true;
        process.nextTick(emitErrorNT, this, err);
      }
    }

    return this;
  } // we set destroyed to true before firing error callbacks in order
  // to make it re-entrance safe in case destroy() is called within callbacks


  if (this._readableState) {
    this._readableState.destroyed = true;
  } // if this is a duplex stream mark the writable part as destroyed as well


  if (this._writableState) {
    this._writableState.destroyed = true;
  }

  this._destroy(err || null, function (err) {
    if (!cb && err) {
      if (!_this._writableState) {
        process.nextTick(emitErrorAndCloseNT, _this, err);
      } else if (!_this._writableState.errorEmitted) {
        _this._writableState.errorEmitted = true;
        process.nextTick(emitErrorAndCloseNT, _this, err);
      } else {
        process.nextTick(emitCloseNT, _this);
      }
    } else if (cb) {
      process.nextTick(emitCloseNT, _this);
      cb(err);
    } else {
      process.nextTick(emitCloseNT, _this);
    }
  });

  return this;
}

function emitErrorAndCloseNT(self, err) {
  emitErrorNT(self, err);
  emitCloseNT(self);
}

function emitCloseNT(self) {
  if (self._writableState && !self._writableState.emitClose) return;
  if (self._readableState && !self._readableState.emitClose) return;
  self.emit('close');
}

function undestroy() {
  if (this._readableState) {
    this._readableState.destroyed = false;
    this._readableState.reading = false;
    this._readableState.ended = false;
    this._readableState.endEmitted = false;
  }

  if (this._writableState) {
    this._writableState.destroyed = false;
    this._writableState.ended = false;
    this._writableState.ending = false;
    this._writableState.finalCalled = false;
    this._writableState.prefinished = false;
    this._writableState.finished = false;
    this._writableState.errorEmitted = false;
  }
}

function emitErrorNT(self, err) {
  self.emit('error', err);
}

function errorOrDestroy(stream, err) {
  // We have tests that rely on errors being emitted
  // in the same tick, so changing this is semver major.
  // For now when you opt-in to autoDestroy we allow
  // the error to be emitted nextTick. In a future
  // semver major update we should change the default to this.
  var rState = stream._readableState;
  var wState = stream._writableState;
  if (rState && rState.autoDestroy || wState && wState.autoDestroy) stream.destroy(err);else stream.emit('error', err);
}

module.exports = {
  destroy: destroy,
  undestroy: undestroy,
  errorOrDestroy: errorOrDestroy
};
}).call(this)}).call(this,require('_process'))
},{"_process":30}],42:[function(require,module,exports){
// Ported from https://github.com/mafintosh/end-of-stream with
// permission from the author, Mathias Buus (@mafintosh).
'use strict';

var ERR_STREAM_PREMATURE_CLOSE = require('../../../errors').codes.ERR_STREAM_PREMATURE_CLOSE;

function once(callback) {
  var called = false;
  return function () {
    if (called) return;
    called = true;

    for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {
      args[_key] = arguments[_key];
    }

    callback.apply(this, args);
  };
}

function noop() {}

function isRequest(stream) {
  return stream.setHeader && typeof stream.abort === 'function';
}

function eos(stream, opts, callback) {
  if (typeof opts === 'function') return eos(stream, null, opts);
  if (!opts) opts = {};
  callback = once(callback || noop);
  var readable = opts.readable || opts.readable !== false && stream.readable;
  var writable = opts.writable || opts.writable !== false && stream.writable;

  var onlegacyfinish = function onlegacyfinish() {
    if (!stream.writable) onfinish();
  };

  var writableEnded = stream._writableState && stream._writableState.finished;

  var onfinish = function onfinish() {
    writable = false;
    writableEnded = true;
    if (!readable) callback.call(stream);
  };

  var readableEnded = stream._readableState && stream._readableState.endEmitted;

  var onend = function onend() {
    readable = false;
    readableEnded = true;
    if (!writable) callback.call(stream);
  };

  var onerror = function onerror(err) {
    callback.call(stream, err);
  };

  var onclose = function onclose() {
    var err;

    if (readable && !readableEnded) {
      if (!stream._readableState || !stream._readableState.ended) err = new ERR_STREAM_PREMATURE_CLOSE();
      return callback.call(stream, err);
    }

    if (writable && !writableEnded) {
      if (!stream._writableState || !stream._writableState.ended) err = new ERR_STREAM_PREMATURE_CLOSE();
      return callback.call(stream, err);
    }
  };

  var onrequest = function onrequest() {
    stream.req.on('finish', onfinish);
  };

  if (isRequest(stream)) {
    stream.on('complete', onfinish);
    stream.on('abort', onclose);
    if (stream.req) onrequest();else stream.on('request', onrequest);
  } else if (writable && !stream._writableState) {
    // legacy streams
    stream.on('end', onlegacyfinish);
    stream.on('close', onlegacyfinish);
  }

  stream.on('end', onend);
  stream.on('finish', onfinish);
  if (opts.error !== false) stream.on('error', onerror);
  stream.on('close', onclose);
  return function () {
    stream.removeListener('complete', onfinish);
    stream.removeListener('abort', onclose);
    stream.removeListener('request', onrequest);
    if (stream.req) stream.req.removeListener('finish', onfinish);
    stream.removeListener('end', onlegacyfinish);
    stream.removeListener('close', onlegacyfinish);
    stream.removeListener('finish', onfinish);
    stream.removeListener('end', onend);
    stream.removeListener('error', onerror);
    stream.removeListener('close', onclose);
  };
}

module.exports = eos;
},{"../../../errors":33}],43:[function(require,module,exports){
module.exports = function () {
  throw new Error('Readable.from is not available in the browser')
};

},{}],44:[function(require,module,exports){
// Ported from https://github.com/mafintosh/pump with
// permission from the author, Mathias Buus (@mafintosh).
'use strict';

var eos;

function once(callback) {
  var called = false;
  return function () {
    if (called) return;
    called = true;
    callback.apply(void 0, arguments);
  };
}

var _require$codes = require('../../../errors').codes,
    ERR_MISSING_ARGS = _require$codes.ERR_MISSING_ARGS,
    ERR_STREAM_DESTROYED = _require$codes.ERR_STREAM_DESTROYED;

function noop(err) {
  // Rethrow the error if it exists to avoid swallowing it
  if (err) throw err;
}

function isRequest(stream) {
  return stream.setHeader && typeof stream.abort === 'function';
}

function destroyer(stream, reading, writing, callback) {
  callback = once(callback);
  var closed = false;
  stream.on('close', function () {
    closed = true;
  });
  if (eos === undefined) eos = require('./end-of-stream');
  eos(stream, {
    readable: reading,
    writable: writing
  }, function (err) {
    if (err) return callback(err);
    closed = true;
    callback();
  });
  var destroyed = false;
  return function (err) {
    if (closed) return;
    if (destroyed) return;
    destroyed = true; // request.destroy just do .end - .abort is what we want

    if (isRequest(stream)) return stream.abort();
    if (typeof stream.destroy === 'function') return stream.destroy();
    callback(err || new ERR_STREAM_DESTROYED('pipe'));
  };
}

function call(fn) {
  fn();
}

function pipe(from, to) {
  return from.pipe(to);
}

function popCallback(streams) {
  if (!streams.length) return noop;
  if (typeof streams[streams.length - 1] !== 'function') return noop;
  return streams.pop();
}

function pipeline() {
  for (var _len = arguments.length, streams = new Array(_len), _key = 0; _key < _len; _key++) {
    streams[_key] = arguments[_key];
  }

  var callback = popCallback(streams);
  if (Array.isArray(streams[0])) streams = streams[0];

  if (streams.length < 2) {
    throw new ERR_MISSING_ARGS('streams');
  }

  var error;
  var destroys = streams.map(function (stream, i) {
    var reading = i < streams.length - 1;
    var writing = i > 0;
    return destroyer(stream, reading, writing, function (err) {
      if (!error) error = err;
      if (err) destroys.forEach(call);
      if (reading) return;
      destroys.forEach(call);
      callback(error);
    });
  });
  return streams.reduce(pipe);
}

module.exports = pipeline;
},{"../../../errors":33,"./end-of-stream":42}],45:[function(require,module,exports){
'use strict';

var ERR_INVALID_OPT_VALUE = require('../../../errors').codes.ERR_INVALID_OPT_VALUE;

function highWaterMarkFrom(options, isDuplex, duplexKey) {
  return options.highWaterMark != null ? options.highWaterMark : isDuplex ? options[duplexKey] : null;
}

function getHighWaterMark(state, options, duplexKey, isDuplex) {
  var hwm = highWaterMarkFrom(options, isDuplex, duplexKey);

  if (hwm != null) {
    if (!(isFinite(hwm) && Math.floor(hwm) === hwm) || hwm < 0) {
      var name = isDuplex ? duplexKey : 'highWaterMark';
      throw new ERR_INVALID_OPT_VALUE(name, hwm);
    }

    return Math.floor(hwm);
  } // Default value


  return state.objectMode ? 16 : 16 * 1024;
}

module.exports = {
  getHighWaterMark: getHighWaterMark
};
},{"../../../errors":33}],46:[function(require,module,exports){
module.exports = require('events').EventEmitter;

},{"events":26}],47:[function(require,module,exports){
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

'use strict';

/*<replacement>*/

var Buffer = require('safe-buffer').Buffer;
/*</replacement>*/

var isEncoding = Buffer.isEncoding || function (encoding) {
  encoding = '' + encoding;
  switch (encoding && encoding.toLowerCase()) {
    case 'hex':case 'utf8':case 'utf-8':case 'ascii':case 'binary':case 'base64':case 'ucs2':case 'ucs-2':case 'utf16le':case 'utf-16le':case 'raw':
      return true;
    default:
      return false;
  }
};

function _normalizeEncoding(enc) {
  if (!enc) return 'utf8';
  var retried;
  while (true) {
    switch (enc) {
      case 'utf8':
      case 'utf-8':
        return 'utf8';
      case 'ucs2':
      case 'ucs-2':
      case 'utf16le':
      case 'utf-16le':
        return 'utf16le';
      case 'latin1':
      case 'binary':
        return 'latin1';
      case 'base64':
      case 'ascii':
      case 'hex':
        return enc;
      default:
        if (retried) return; // undefined
        enc = ('' + enc).toLowerCase();
        retried = true;
    }
  }
};

// Do not cache `Buffer.isEncoding` when checking encoding names as some
// modules monkey-patch it to support additional encodings
function normalizeEncoding(enc) {
  var nenc = _normalizeEncoding(enc);
  if (typeof nenc !== 'string' && (Buffer.isEncoding === isEncoding || !isEncoding(enc))) throw new Error('Unknown encoding: ' + enc);
  return nenc || enc;
}

// StringDecoder provides an interface for efficiently splitting a series of
// buffers into a series of JS strings without breaking apart multi-byte
// characters.
exports.StringDecoder = StringDecoder;
function StringDecoder(encoding) {
  this.encoding = normalizeEncoding(encoding);
  var nb;
  switch (this.encoding) {
    case 'utf16le':
      this.text = utf16Text;
      this.end = utf16End;
      nb = 4;
      break;
    case 'utf8':
      this.fillLast = utf8FillLast;
      nb = 4;
      break;
    case 'base64':
      this.text = base64Text;
      this.end = base64End;
      nb = 3;
      break;
    default:
      this.write = simpleWrite;
      this.end = simpleEnd;
      return;
  }
  this.lastNeed = 0;
  this.lastTotal = 0;
  this.lastChar = Buffer.allocUnsafe(nb);
}

StringDecoder.prototype.write = function (buf) {
  if (buf.length === 0) return '';
  var r;
  var i;
  if (this.lastNeed) {
    r = this.fillLast(buf);
    if (r === undefined) return '';
    i = this.lastNeed;
    this.lastNeed = 0;
  } else {
    i = 0;
  }
  if (i < buf.length) return r ? r + this.text(buf, i) : this.text(buf, i);
  return r || '';
};

StringDecoder.prototype.end = utf8End;

// Returns only complete characters in a Buffer
StringDecoder.prototype.text = utf8Text;

// Attempts to complete a partial non-UTF-8 character using bytes from a Buffer
StringDecoder.prototype.fillLast = function (buf) {
  if (this.lastNeed <= buf.length) {
    buf.copy(this.lastChar, this.lastTotal - this.lastNeed, 0, this.lastNeed);
    return this.lastChar.toString(this.encoding, 0, this.lastTotal);
  }
  buf.copy(this.lastChar, this.lastTotal - this.lastNeed, 0, buf.length);
  this.lastNeed -= buf.length;
};

// Checks the type of a UTF-8 byte, whether it's ASCII, a leading byte, or a
// continuation byte. If an invalid byte is detected, -2 is returned.
function utf8CheckByte(byte) {
  if (byte <= 0x7F) return 0;else if (byte >> 5 === 0x06) return 2;else if (byte >> 4 === 0x0E) return 3;else if (byte >> 3 === 0x1E) return 4;
  return byte >> 6 === 0x02 ? -1 : -2;
}

// Checks at most 3 bytes at the end of a Buffer in order to detect an
// incomplete multi-byte UTF-8 character. The total number of bytes (2, 3, or 4)
// needed to complete the UTF-8 character (if applicable) are returned.
function utf8CheckIncomplete(self, buf, i) {
  var j = buf.length - 1;
  if (j < i) return 0;
  var nb = utf8CheckByte(buf[j]);
  if (nb >= 0) {
    if (nb > 0) self.lastNeed = nb - 1;
    return nb;
  }
  if (--j < i || nb === -2) return 0;
  nb = utf8CheckByte(buf[j]);
  if (nb >= 0) {
    if (nb > 0) self.lastNeed = nb - 2;
    return nb;
  }
  if (--j < i || nb === -2) return 0;
  nb = utf8CheckByte(buf[j]);
  if (nb >= 0) {
    if (nb > 0) {
      if (nb === 2) nb = 0;else self.lastNeed = nb - 3;
    }
    return nb;
  }
  return 0;
}

// Validates as many continuation bytes for a multi-byte UTF-8 character as
// needed or are available. If we see a non-continuation byte where we expect
// one, we "replace" the validated continuation bytes we've seen so far with
// a single UTF-8 replacement character ('\ufffd'), to match v8's UTF-8 decoding
// behavior. The continuation byte check is included three times in the case
// where all of the continuation bytes for a character exist in the same buffer.
// It is also done this way as a slight performance increase instead of using a
// loop.
function utf8CheckExtraBytes(self, buf, p) {
  if ((buf[0] & 0xC0) !== 0x80) {
    self.lastNeed = 0;
    return '\ufffd';
  }
  if (self.lastNeed > 1 && buf.length > 1) {
    if ((buf[1] & 0xC0) !== 0x80) {
      self.lastNeed = 1;
      return '\ufffd';
    }
    if (self.lastNeed > 2 && buf.length > 2) {
      if ((buf[2] & 0xC0) !== 0x80) {
        self.lastNeed = 2;
        return '\ufffd';
      }
    }
  }
}

// Attempts to complete a multi-byte UTF-8 character using bytes from a Buffer.
function utf8FillLast(buf) {
  var p = this.lastTotal - this.lastNeed;
  var r = utf8CheckExtraBytes(this, buf, p);
  if (r !== undefined) return r;
  if (this.lastNeed <= buf.length) {
    buf.copy(this.lastChar, p, 0, this.lastNeed);
    return this.lastChar.toString(this.encoding, 0, this.lastTotal);
  }
  buf.copy(this.lastChar, p, 0, buf.length);
  this.lastNeed -= buf.length;
}

// Returns all complete UTF-8 characters in a Buffer. If the Buffer ended on a
// partial character, the character's bytes are buffered until the required
// number of bytes are available.
function utf8Text(buf, i) {
  var total = utf8CheckIncomplete(this, buf, i);
  if (!this.lastNeed) return buf.toString('utf8', i);
  this.lastTotal = total;
  var end = buf.length - (total - this.lastNeed);
  buf.copy(this.lastChar, 0, end);
  return buf.toString('utf8', i, end);
}

// For UTF-8, a replacement character is added when ending on a partial
// character.
function utf8End(buf) {
  var r = buf && buf.length ? this.write(buf) : '';
  if (this.lastNeed) return r + '\ufffd';
  return r;
}

// UTF-16LE typically needs two bytes per character, but even if we have an even
// number of bytes available, we need to check if we end on a leading/high
// surrogate. In that case, we need to wait for the next two bytes in order to
// decode the last character properly.
function utf16Text(buf, i) {
  if ((buf.length - i) % 2 === 0) {
    var r = buf.toString('utf16le', i);
    if (r) {
      var c = r.charCodeAt(r.length - 1);
      if (c >= 0xD800 && c <= 0xDBFF) {
        this.lastNeed = 2;
        this.lastTotal = 4;
        this.lastChar[0] = buf[buf.length - 2];
        this.lastChar[1] = buf[buf.length - 1];
        return r.slice(0, -1);
      }
    }
    return r;
  }
  this.lastNeed = 1;
  this.lastTotal = 2;
  this.lastChar[0] = buf[buf.length - 1];
  return buf.toString('utf16le', i, buf.length - 1);
}

// For UTF-16LE we do not explicitly append special replacement characters if we
// end on a partial character, we simply let v8 handle that.
function utf16End(buf) {
  var r = buf && buf.length ? this.write(buf) : '';
  if (this.lastNeed) {
    var end = this.lastTotal - this.lastNeed;
    return r + this.lastChar.toString('utf16le', 0, end);
  }
  return r;
}

function base64Text(buf, i) {
  var n = (buf.length - i) % 3;
  if (n === 0) return buf.toString('base64', i);
  this.lastNeed = 3 - n;
  this.lastTotal = 3;
  if (n === 1) {
    this.lastChar[0] = buf[buf.length - 1];
  } else {
    this.lastChar[0] = buf[buf.length - 2];
    this.lastChar[1] = buf[buf.length - 1];
  }
  return buf.toString('base64', i, buf.length - n);
}

function base64End(buf) {
  var r = buf && buf.length ? this.write(buf) : '';
  if (this.lastNeed) return r + this.lastChar.toString('base64', 0, 3 - this.lastNeed);
  return r;
}

// Pass bytes on through for single-byte encodings (e.g. ascii, latin1, hex)
function simpleWrite(buf) {
  return buf.toString(this.encoding);
}

function simpleEnd(buf) {
  return buf && buf.length ? this.write(buf) : '';
}
},{"safe-buffer":31}],48:[function(require,module,exports){
(function (global){(function (){

/**
 * Module exports.
 */

module.exports = deprecate;

/**
 * Mark that a method should not be used.
 * Returns a modified function which warns once by default.
 *
 * If `localStorage.noDeprecation = true` is set, then it is a no-op.
 *
 * If `localStorage.throwDeprecation = true` is set, then deprecated functions
 * will throw an Error when invoked.
 *
 * If `localStorage.traceDeprecation = true` is set, then deprecated functions
 * will invoke `console.trace()` instead of `console.error()`.
 *
 * @param {Function} fn - the function to deprecate
 * @param {String} msg - the string to print to the console when `fn` is invoked
 * @returns {Function} a new "deprecated" version of `fn`
 * @api public
 */

function deprecate (fn, msg) {
  if (config('noDeprecation')) {
    return fn;
  }

  var warned = false;
  function deprecated() {
    if (!warned) {
      if (config('throwDeprecation')) {
        throw new Error(msg);
      } else if (config('traceDeprecation')) {
        console.trace(msg);
      } else {
        console.warn(msg);
      }
      warned = true;
    }
    return fn.apply(this, arguments);
  }

  return deprecated;
}

/**
 * Checks `localStorage` for boolean values for the given `name`.
 *
 * @param {String} name
 * @returns {Boolean}
 * @api private
 */

function config (name) {
  // accessing global.localStorage can trigger a DOMException in sandboxed iframes
  try {
    if (!global.localStorage) return false;
  } catch (_) {
    return false;
  }
  var val = global.localStorage[name];
  if (null == val) return false;
  return String(val).toLowerCase() === 'true';
}

}).call(this)}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {})
},{}]},{},[1])(1)
});

//encode takes in 1 array of length 2 and returns a Uint8Array.
//Input: First item in array is the packet type (type=number). Second item is the packet data (type=any).
window.encode = utils.encode;
window.encodeInverse = utils.encodeInverse;

//decode takes in a buffer and returns 1 array of length 2.
//Output: First item in array is the packet type (type=number). Second item is the packet data (type=any).
window.decode = utils.decode;
window.decodeInverse = utils.decodeInverse;

//compress takes in a string and returns a string
window.compress = utils.compress;

//decompress takes in a string and returns a string
window.decompress = utils.decompress;

var MSG_TYPES = {
  "ROTATION_INPUT": 0, //outgoing
  "MOVEMENT_INPUT": 1, //outgoing
  "SHOOTING_INPUT": 2, //outgoing
  "PASSIVE_MODE": 3, //outgoing
  "SEND_CHAT_MESSAGE": 4, //outgoing
  "UPGRADE_STAT": 5, //outgoing
  "UPGRADE_BODY": 6, //outgoing
  "UPGRADE_WEAPON": 7, //outgoing
  "CHANGE_CONTROL_STATE": 8, //outgoing
  "CHANGE_CONTROL_POSITION": 9, //outgoing
  "PING": 9, //outgoing
  "SET_TYPING": 11, //outgoing
  "GAME_UPDATE": 0, //incoming
  "ADD_UPGRADE_POINT": 1, //incoming
  "SET_STAT_UPGRADES": 2, //incoming
  "ON_KILL": 3, //incoming
  "RECEIVE_ANNOUNCEMENT": 4, //incoming
  "RECEIVE_TIMER": 5, //incoming
  "RECEIVE_NOTIFICATION": 6, //incoming
  "RECEIVE_BODY_UPGRADES": 7, //incoming
  "RECEIVE_WEAPON_UPGRADES": 8, //incoming
  "RECEIVE_DIMENSION_ATTRIBUTES": 16, //incoming
  "RECEIVE_CLASS_TREE": 17, //incoming
  "RECEIVE_SERVERS": 202, //not used anymore
  "COPY_TEXT": 32, //incoming
  "ON_DEATH": 33, //incoming
  "RENDER_ENTITY": 34, //incoming
  "RECEIVE_TANK": 35, //incoming
  "GATES_UPDATE": 36, //incoming
  "EDITMODE": 37, //incoming
  "RESPAWN_IN_SERVER": 306, //never used
  "SEND_TO_SERVER": 39, //incoming
  "POPUP": 40, //incoming
  "INIT_LEADERBOARD": 41, //incoming
  "KICK_REASON": 42, //incoming
  "ADD_STARS": 43, //incoming
  "COMPLETE_ACHIEVEMENT": 44, //incoming
  "CHANGE_ACHIEVEMENT_COMPLETION": 45, //incoming
  "LOAD_WEAPON_UPGRADE": 16, //outgoing
  "LOAD_BODY_UPGRADE": 17, //outgoing
  "CHANGE_WEAPON": 18, //outgoing
  "CHANGE_BODY": 19, //outgoing
  "JOIN_GAME": 20, //outgoing
  "REPORT_BUG": 405, //unused
  "SUBMIT_FEEDBACK": 406, //unused
  "SESSION_ID": 21, //outgoing
  "WORMHOLE_SPAWN": 500, //unused
  "PLAYER_COUNT": 501, //unused
  "GLOBAL_BROADCAST": 502, //unused
  "UNLIST_SERVER": 503 //unused
};

WebSocket.prototype.send = new Proxy(WebSocket.prototype.send, {
    apply: function (target, scope, args) {
        window.gameSocket = scope;
        let data = target.apply(scope, args);
        return data;
    }
});

//add back executeMessage
window.executeMessage = function (type, content) {
    if (typeof gameSocket !== 'undefined' && gameSocket.readyState == WebSocket.OPEN && type.toUpperCase() in MSG_TYPES)
        gameSocket.send(encodeInverse([MSG_TYPES[type.toUpperCase()], content]));
};